• Title/Summary/Keyword: MG-Si

Search Result 2,126, Processing Time 0.026 seconds

Preparation of Ferroelectric $BaTiO_3$ Thin Films on MgO-Buffered Si Substrates (MgO 완충층을 이용한 Si 기판상 강유전체 $BaTiO_3$ 박막의 제조)

  • 김상섭
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.373-379
    • /
    • 1997
  • A study on the deposition and characterization of BaTiO3 thin films on MgO-buffered Si(100) substrates by sputtering was conducted. The MgO buffer layers were investigated as a function of deposition temperature. At lower substrate temperature, the MgO layers were not fully crystalline, but a crystallized MgO layer with (001) preferred orientation was obtained at the substrate temperature of $700^{\circ}C$. Partially (00ι) or (h00) textured BaTiO3 films were obtained on Si(100) with the MgO buffer layer grown at 700ι. While, randomly oriented BaTiO3 films with large-scale cracks on the surface were made without the MgO layer. The crystallographic orientation, morphology and electrical properties between the BaTiO3 films on Si with and without the MgO layer were compared using the BaTiO3 film on MgO(100) single crystal substrate as a reference system. Also the favorable role of the MgO layer as a buffer for growing of oriented BaTiO3 films on Si substrates was confirmed.

  • PDF

Luminescent Characteristics of Eu2+- Doped Ca3MgSi2O8:Eu2+ White Phosphors for LED (백색 LED용 Ca3MgSi2O8:Eu2+ 백색 형광체의 발광특성)

  • Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.474-477
    • /
    • 2018
  • $Ca_3MgSi_2O_8:Eu^{2+}$(x = 0.003, 0.005, 0.007, 0.01, 0.03 mol) white phosphors for Light Emitting Diodes(LED) are synthesized with different concentrations of $Eu^{2+}$ ions using a solid state reaction method. The crystal structures, surface and optical properties of the phosphors are investigated using X-Ray Diffraction(XRD), Scanning Electron Microscope(SEM) and photoluminescence(PL). The X-Ray Diffraction results reveals that the crystal structure of the $Ca_3MgSi_2O_8:Eu^{2+}$ is a monoclinic system. The particle size of $Ca_3MgSi_2O_8:Eu^{2+}$ white phosphors is about $1{\sim}5{\mu}m$, as confirmed by SEM images. The maximum emission spectra of the phosphors are observed at 0.01 mol $Eu^{2+}$ concentration. The decrease in PL intensity in the $Ca_3MgSi_2O_8:Eu^{2+}$ white phosphors with $Eu^{2+}$ concentration is interpreted by concentration quenching. The International Commission on Illumination(CIE) coordinate of 0.01 mol Eu doped $Ca_3MgSi_2O_8$ is X = 0.2136, Y = 0.3771.

Effect of Fe and Mn Contents on the Tensile Property of Al-9%Si-0.3%Mg Alloy for High Pressure Die Casting (고압 금형주조용 Al-9%Si-0.3%Mg 합금의 Fe, Mn 함량이 인장특성에 미치는 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.31 no.1
    • /
    • pp.18-25
    • /
    • 2011
  • Effect of Fe and Mn contents on the tensile properties has been studied in Al-9wt%Si-0.3wt%Mg alloy. As Fe content of Al-9wt%Si-0.3wt%Mg-0.5wt%Mn alloy increased from 0.15wt% to 0.45wt%, tensile strength of as-cast alloy decreased from 192 MPa to 174 MPa, and elongation of the alloy also decreased from 4.8% to 4.2%. Decrease of these properties can be explained as the formation of plate shape, ${\beta}-Al_5FeSi$ phase with high Fe/Mn ratio of the alloy. However when Mn content of Al-9wt%Si-0.3wt%Mg-0.45wt%Fe alloy increased from 0.3wt% to 0.5wt%, tensile strength of T6 aged alloy increased from 265 MPa to 275 MPa, and elongation of the alloy increased from 2.3% to 3.6%. These improvements attribute to chinese script, ${\alpha}-Al_{15}(Mn,Fe)_3Si_2$ phase shape-modified from ${\beta}-Al_5FeSi$ phase with low Fe/Mn ratio of the alloy.

Synthesis and characterization of Mg-Si thermoelectric compound subjected to mechanical alloying (기계적 합금화에 의한 Mg-Si계 열전화합물의 합성 및 평가)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2007
  • We have applied mechanical alloying (MA) to get $Mg_2Si$ thermoelectric material with nano-sized grains. An optimal milling and heat treatment conditions to obtain the single phase of $Mg_2Si$ compound with fine microstructure were investigated by X-ray diffraction and differential scanning calorimetry (DSC) measurement. The $Mg_{66.7}Si_{33.3}$ MA samples ball-milled for $20{\sim}180\;hrs$ exhibit two broad exothermic heat releases around $220^{\circ}C$ and $570^{\circ}C$. On the other hand, MA sample ball-milled far 260 hrs exhibits only a sharp exothermic peak at $230^{\circ}C$ Single phase Mg2Si powder can be obtained by MA of $Mg_{66.7}Si_{33.3}$ mixture for 60 hours and subsequently heated up to $620^{\circ}C$. Sintering of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies at $800{\sim}900^{\circ}C$ under 50 MPa. The shrinkage of sintering sample during SPS was significant at about $200^{\circ}C$. All compact bodies have a high relative density above 94% with metallic glare on the surface.

Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature (Al-Si-Mg-Cu 합금의 자동차 엔진 사용 온도에서 열처리 조건에 따른 열확산도 변화)

  • Choi, Se-Weon
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.642-648
    • /
    • 2021
  • The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 ℃ for 6 h, followed by water cooling, and samples were artificially aged in air at 180 ℃ and 220 ℃ for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 ℃ and above 300 ℃, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 ℃ and 400 ℃, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 ℃ and 400 ℃ was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.

Microstructure and Wear Property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ Composites Fabricated by Pressureless Infiltration Method (무가압 침투법에 의해 제조된 $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ 복합재료의 조직 및 마멸특성)

  • Woo, Kee-Do;Kim, Sug-Won;Ahn, Haeng-Keun;Jeong, Jin-Ho
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.254-259
    • /
    • 2000
  • Metal matrix composites(MMCs) reinforced with hard particles have many potential application in aerospace structures, auto parts, semiconductor package, heat resistant panels, wear resistant materials and so on. In this work, the effect of SiC partioel sizes(50 and 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on the microstructure and the wear property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ composites produced by pressureless infiltration method have been investigated using optical microscopy, scanning eletron microcopy(SEM) with EDS(energy dispersive spectrometry), hardness test, X-ray diffractometer(XRD) and wear test. In present study, the sound $Al-5Mg-X(Si,Cu,Ti)/SiC_p$(50 and 100 ${\mu}m$) composites were fabricated by pressureless infiltration method. The $Al-5Mg-0.3Si-O.1Cu-O.1Ti/SiC_p$ composite with $50 {\mu}m$ size of SiC particle has higher hardness and better wear property than any other composite with $100{\mu}m$ size of SiC particle produced by pressureless infiltration method. The hardness and wear property of $Al-5Mg/SiC_p$(50 and 100 ${\mu}m$) composites were enhanced by the addition of Si, Cu and Ti in Al-5%Mg matrix alloy.

  • PDF

Effects of MgO Addition on the Properties of $Al_2$O$_3$-SiC-C Refractory (Al$_2$O$_3$-SiC-C 내화물의 특성에 미치는 MgO의 첨가효과)

  • 조문규;정두화;이석근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.129-136
    • /
    • 1998
  • The effects of MgO on the resistance to corrosion and oxidation of Al2O3-SiC-C refractory have been in-vestigated. The resistance to oxidation was improved as the amount of MgO increased. The resistance to corrosion was enhanced until 2 wt% MgO content but degraded over that content. From the dependence of temperatuer on the oxidation resistance oxidation was suppressed by the microstructural densification caused by spinel formation over 1200~130$0^{\circ}C$and the formation MgO-Al2O3-SiO2 liguid-phase over 130$0^{\circ}C$ The weight loss of specimens containing MgO with various purity at range of 95 to 99% and par-ticle size of -0.045 mm to -0.074 mm was examined. The oxidation resistance was not changed signficantly with the particle size and purity of MgO powders.

  • PDF

Effect of Solution Treatment Conditions on the Microstructure and Hardness Changes of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu Alloys (Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 미세조직 및 경도 변화에 미치는 용체화 처리 조건의 영향)

  • Sung-Bean Chung;Min-Su Kim;Dae-Up Kim;Sung-Kil Hong
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.337-346
    • /
    • 2022
  • In order to optimize the solution treatment conditions of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu alloys, a series of heat treatment experiments were conducted under various solution treatment times up to 7 hours at 545℃, followed by a microstructural analysis using optical microscopy, FE-SEM, and Brinell hardness measurements. Rapid coarsening of eutectic Si particles was observed in the alloys during the first 3 hours of solution treatment but the size of those Si particles did not change at longer solution treatment conditions. Meanwhile, the degree of spheroidisation of eutectic Si particles increased until the solution treatment time was increased up to 7 hours. Q-Al5Cu2Mg8Si6 andθ-Al2Cu were observed in as-cast Cu-containing Al alloys but the intermetallic compounds were dissolved completely after 3 hours of solution treatment at 545℃. Depending on the initial Mg composition of the Al alloys, π-Al8FeMg3Si either disappeared in the alloy with 0.3wt% of Mg content after 5 hours of solution treatment or remained in the alloy with 0.5wt% of Mg content after 7 hours of solution treatment time. Mg and Cu content in the primary-α phase of the Al alloys increased until the solution treatment time reached 5 hours, which was in accordance with the dissolution behavior of Mg or Cu-containing intermetallic compounds with respect to the solution treatment time. From the results of microstructural changes in the Al-7Si-Mg-Cu alloys during solution treatment, it was concluded that at least 5 hours of solution treatment at 545℃ is required to maximize the age hardening effect of the present Al alloys. The same optimal solution treatment conditions could also be derived from Brinell hardness values of the present Al-7Si-Mg-Cu alloys measured at different solution treatment conditions.

The effects of Mg2Si(p) on microstructure and mechanical properties of AA332 composite

  • Zainon, Fizam;Ahmad, Khairel Rafezi;Daud, Ruslizam
    • Advances in materials Research
    • /
    • v.5 no.1
    • /
    • pp.55-66
    • /
    • 2016
  • This paper describes a study on the effects of $Mg_2Si_{(p)}$ addition on the microstructure, porosity, and mechanical properties namely hardness and tensile properties of AA332 composite. Each composite respectively contains 5, 10, 15, and 20 wt% reinforcement particles developed by a stir-casting. The molten composite was stirred at 600 rpm and melted at $900^{\circ}C{\pm}5^{\circ}C$. The $Mg_2Si$ particles were wrapped in an aluminum foil to keep them from burning when melting. The findings revealed that the microstructure of $Mg_2Si_{(p)}/AA332$ consists of ${\alpha}$-Al, binary eutectic ($Al+Mg_2Si$), $Mg_2Si$ particles, and intermetallic compound. The intermetallic compound was identified as Fe-rich and Cu-rich, formed as polygonal or blocky, Chinese script, needle-like, and polyhendrons or "skeleton like". The porosity of $Mg_2Si_{(p)}/AA332$ composite increased from 8-10% and the density decreased from 9-12% from as-cast. Mechanical properties such as hardness increased for over 42% from as-cast and the highest UTS, elongation, and maximum Q.I were achieved in the sample of 10% $Mg_2Si$. The study concludes that combined with AA332, the amount of 10 wt% of$Mg_2Si$ is a suitable reinforcement quantity with the combination ofAA332.

Distribution of THMs at Drinking Water Purification Plants in the East Coast Region of Gangwon-do (강원도 동해안 지역 정수장의 THMs 분포)

  • Huh, In-Ryang;Shin, Yong-Keon;Park, Sung-Bin;Lee, Teak-Soo;Shim, Tae-Heum
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • Objectives: In an effort to examine the distribution of THMs (Trihalomethane) generated from chlorine disinfection by the drinking water treatment plants located on the east coast region of Gangwon-do, this study surveyed the distribution and concentrations of each component of THMs twice per month for 5 years from 2008 to 2012. Fluctuation pattern in the seasonal generation amount was identified. In addition, the correlation between the concentration of organic substances in water and THMs was assessed, along with stability of purified water quality supplied by the water treatment plants on the east coast by analyzing the composition ratio of each component that constitutes THMs and the detection frequency. Method: The research was done on purified water supplied by 29 water treatment plants in 7 cities and counties (Goseong-gun, Sokcho-si, Yangyang-gun, Gangneung-si, Donghae-si, Samcheok-si, Taebaek-si) located in Gangwon-do on the east coast. Water samples were collected twice a month from 2008 to 2012 and were investigate for chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform, based on analysis through Purge-Trap (Tekmar 3000) devices using FID-attached GC (HP 6890, Hewlett Packard). Result: THMs concentration detected at Gangneung-si was 0.0086mg/L, Goseong-gun 0.0019mg/L, Donghae-si 0.0099 mg/L, Samcheok-si 0.0016 mg/L, Sokcho-si 0.0057 mg/L, Yangyang-gun 0.0027 mg/L and Taebaek-si 0.0038 mg/L. As the THMs composition rate, chloroform constitutes 51.4% followed bybromodichloromethane 22.3%, bromoform 15.2% and dibromochloromethane 11.1% respectively. Conclusion: Throughout the entire THMs survey areas and period, the maximum concentration was 0.072mg/L, which did not exceed the water quality standards (0.1 mg/L), and the overall average concentration was very low at 0.0044 mg/L.