• Title/Summary/Keyword: MFCS

Search Result 74, Processing Time 0.021 seconds

Characteristics of Electricity Generation by Microbial Fuel Cell for Wastewater Treatment (폐수처리를 위한 미생물연료전지의 전기생산 특성)

  • Kim, Sun-Il;Lee, Sung-Wook;Kim, Kyung-Ryang;Lee, Jae-Wook;Roh, Sung-Hee
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.213-217
    • /
    • 2009
  • Microbial fuel cells (MFCs) have been known as a new alternative energy conversion technology for treating wastewater and producing electricity simultaneously. A MFC converts the chemical energy of the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions. To examine the performance of MFC, in this work, the characteristics of the efficiency of wastewater treatment and generation of electricity was evaluated for sewage. When acetate as a carbon source was added into the sewage, the removal efficiency of COD was increased from 75.7% to 88.2% and the voltage was increased significantly from 0.22 V to 0.4 V. The influence of distance between anode and cathode was examined and the effect of the surface area of anode was investigated under the various external resistances. It was found that the maximum power density was $610mW/m^2$ and power generation was effective when the distance between the electrodes was shorter and the surface area of the anode was smaller.

Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier (가스화기에서 WGS 반응을 통한 합성가스의 수소 전환)

  • Lee, See Hoon;Kim, Jung Nam;Eom, Won Hyun;Baek, Il Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

Measurement of Activation and Ohmic Losses using a Current Interruption Technique in a Microbial Fuel Cell (미생물연료전지(MFC)에서 전류차단법(current interrupt technique)을 이용한 활성화전압손실(activation loss)과 저항전압손실(Ohmic loss)의 측정)

  • Park, Kyung-Won;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.357-362
    • /
    • 2010
  • Electricity can be directly generated from organic matter even wastewaters using a microbial fuel cell. To achieve high power in MFCs, finding factors decreasing activation and Ohmic losses is very important. In this study we determined activation loss at the anode and cathode and Ohmic loss using the current interruption technique in a H-type MFC. Activation loss at the cathode was four times higher that that of anode activation loss even if pt-coated carbon (0.5 $mg/cm^2$;10%Pt) was used as the cathode. Ohmic loss determined using current interruption technique (1146 ${\Omega}$) was almost same as the internal resistance (1167 ${\Omega}$) measured using AC impedance. The sum of activation losses at the anode and cathode was the same as the value of activation loss of the cell.

Recent Advance in Microbial Fuel Cell based on Composite Membranes (복합막 기반의 미생물 연료전지 연구에 대한 총설)

  • Kim, Se Min;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.120-132
    • /
    • 2021
  • Microbial fuel cell (MFC) is a bio-electrochemical device that generates electricity by utilizing bacterial catalytic activity that degrades wastewater. Proton exchange membrane (PEM) is the core component of MFC that decides its performance, and Nafion membrane is the most widely used PEM. In spite of the excellent performance of Nafion, it has drawbacks such as high cost, biofouling issue, and non-biodegradable property. Recent studies in MFC attempted to synthetize the alternative membrane for Nafion by incorporating various polymers, sulfonating, fluorinating, and doping other chemicals. This review summarizes characteristics and performances of different composite membrane based MFCs, mostly focusing on PEM.

A Study on the Selection of Distribution Center in the City Using GIS: With Seoul as the center (GIS를 활용한 도심 물류센터 거점 선정을 위한 연구: 서울시를 중심으로)

  • Jun, In-Sung;Ahn, Seung-Bum;Yun, Kyong-Jun
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.1
    • /
    • pp.71-85
    • /
    • 2024
  • Due to the impact of COVID-19 in 2020, online growth is increasing more rapidly, and the need for MFCs has become important to strengthen the Last Mile service, especially in Gangnam and Seocho, where population density is high. This study analyzed MFC operation case studies using Arc GIS (Geographic Information System), and in the case of Seoul, delivery to four MFC bases is not possible within 30 minutes, and for delivery within 30 minutes, it is necessary to secure MFC bases in areas with many consumers. As a result of the analysis, it was confirmed that two to three MFC operating bases are needed for each region based on Seoul Metropolitan Government and at least one base for each administrative district depending on the delivery service after ordering.

Use of Nitrate and Ferric Ion as Electron Acceptors in Cathodes to Improve Current Generation in Single-cathode and Dual-cathode Microbial Fuel Cells (Single-cathode와 Dual-cathode로 구성된 미생물연료전지에서 전류발생 향상을 위한 전자수용체로서의 Nitrate와 Ferric ion의 이용)

  • Jang, Jae Kyung;Ryou, Young Sun;Kim, Jong Goo;Kang, Youn Koo;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.414-418
    • /
    • 2012
  • The quantity of research on microbial fuel cells has been rapidly increasing. Microbial fuel cells are unique in their ability to utilize microorganisms and to generate electricity from sewage, pig excrement, and other wastewaters which include organic matter. This system can directly produce electrical energy without an inefficient energy conversion step. However, with MFCs maximum power production is limited by several factors such as activation losses, ohmic losses, and mass transfer losses in cathodes. Therefore, electron acceptors such as nitrate and ferric ion in the cathodes were utilized to improve the cathode reaction rate because the cathode reaction is very important for electricity production. When 100 mM nitrate as an electron acceptor was fed into cathodes, the current in single-cathode and dual-cathode MFCs was noted as $3.24{\pm}0.06$ mA and $4.41{\pm}0.08$ mA, respectively. These values were similar to when air-saturated water was fed into the cathodes. One hundred mM nitrate as an electron acceptor in the cathode compartments did not affect an increase in current generation. However, when ferric ion was used as an electron acceptor the current increased by $6.90{\pm}0.36$ mA and $6.67{\pm}0.33$ mA, in the single-cathode and dual-cathode microbial fuel cells, respectively. These values, in single-cathode and dual-cathode microbial fuel cells, represent an increase of 67.1% and 17.6%, respectively. Furthermore, when supplied with ferric ion without air, the current was higher than that of only air-saturated water. In this study, we attempted to reveal an inexpensive and readily available electron acceptor which can replace platinum in cathodes to improve current generation by increasing the cathode reaction rate.

Studies on a Feasibility of Swine Farm Wastewater Treatment using Microbial Fuel Cell (미생물연료전지의 가축분뇨 처리 가능성 연구)

  • Jang, Jae-Kyung;Kim, Se-Hee;Ryou, Young-Sun;Lee, Sung-Hyoun;Kim, Jong-Gu;Kang, Young-Goo;Kim, Young-Hwa;Choi, Jung-Eun
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.461-466
    • /
    • 2010
  • In this study the feasibility of simultaneous electricity generation and treatment of swine farm wastewater using microbial fuel cells (MFCs) was examined. Two single-chamber MFCs containing an anode filled with different ratio of graphite felt and stainless-steel cross strip was used in all tests. The proportion of stainless-steel cross strip to graphite felt in the anode of control microbial fuel cell (CMFC) was higher than that of swine microbial fuel cell (SMFC) to reduce construction costs. SMFCs produced a stable current of 18 mA by swine wastewater with chemical oxygen demand (COD) of $3.167{\pm}80\;mg/L$ after enriched. The maximum power density and current density of SMFCs were $680\;mW/m^3$ and $3,770\;mA/m^3$, respectively. In the CMFC, power density and current density was lower than that of SMFC. CODs decreased by the SMFC and CMFC from $3.167{\pm}80$ to $865{\pm}21$ and $930{\pm}14\;mg/L$, achieving 72.7% and 70.6% COD removal, respectively. The suspended solid (SS) of both fuel cells was also reduced over 99% ($4,533{\pm}67$ to $24.0{\pm}6.0\;mg/L$). The concentration of nutritive salts, ${NH_4}^+$, ${NO_3}^-$, and ${PO_4}^{3-}$, dropped by 65.4%, 57.5%, and 73.7% by the SMFC, respectively. These results were similar with those of CMFC. These results show that the microbial fuel cells using electrode with mix stainless-steel cross strip and graphite felt can treat the swine wastewater simultaneously with an electricity generation from swine wastewater.

Analysis of research trends for utilization of P-MFC as an energy source for nature-based solutions - Focusing on co-occurring word analysis using VOSviewer - (자연기반해법의 에너지원으로서 P-MFC 활용을 위한 연구경향 분석 - VOSviewer를 활용한 동시 출현단어 분석 중심으로 -)

  • Mi-Li Kwon;Gwon-Soo Bahn
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.41-50
    • /
    • 2024
  • Plant Microbial Fuel Cells (P-MFCs) are biomass-based energy technologies that generate electricity from plant and root microbial communities and are suitable for natural fundamental solutions considering sustainable environments. In order to develop P-MFC technology suitable for domestic waterfront space, it is necessary to analyze international research trends first. Therefore, in this study, 700 P-MFC-related research papers were investigated in Web of Science, and the core keywords were derived using VOSviewer, a word analysis program, and the research trends were analyzed. First, P-MFC-related research has been on the rise since 1998, especially since the mid to late 2010s. The number of papers submitted by each country was "China," "U.S." and "India." Since the 2010s, interest in P-MFCs has increased, and the number of publications in the Philippines, Ukraine, and Mexico, which have abundant waterfront space and wetland environments, is increasing. Secondly, from the perspective of research trends in different periods, 1998-2015 mainly carried out microbial fuel cell performance verification research in different environments. The 2016-2020 period focuses on the specific conditions of microbial fuel cell use, the structure of P-MFC and how it develops. From 2021 to 2023, specific research on constraints and efficiency improvement in the development of P-MFC was carried out. The P-MFC-related international research trends identified through this study can be used as useful data for developing technologies suitable for domestic waterfront space in the future. In addition to this study, further research is needed on research trends and levels in subsectors, and in order to develop and revitalize P-MFC technologies in Korea, research on field applicability should be expanded and policies and systems improved.

A Study on Quality Improvement for the Prevention of Water Infiltration and Corrosion of Helicopter MRA Control-Rod (회전익 항공기 MRA 조종로드 방수 및 부식 방지에 관한 연구)

  • Lim, Hyun-Gyu;Choi, Jae-hyung;Kim, Dae-Han;Jang, Min-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.92-100
    • /
    • 2017
  • The Helicopter MRA Control Rod System has the important function of controlling the speed, height, and direction of helicoptersby adjusting the main rotor disc. However, the ingress of water into the inner control rod can cause ice damage in the rod during winter operation and also corrosion;these defects need to be rectified. The water flowed into the control rod through the upper side space, and the rod was cracked during icing expansion occurring at low temperature. The corrosion occurred due to the lack of coating process during the manufacturing process. To resolve these problems, the upper rod was sealed to prevent water inflow and a coating process was added to prevent corrosion. These solutions were verified by awaterproof test and a salt fog test. The phenomena, causes and measures were reviewed and the methods of improvement were established and proven. This proposed technology to prevent water infiltration and corrosion will contribute to the safety of rotary wing aircraft.

Effect of External Resistance on Electrical Properties of Two-Chamber type Microbial Fuel Cells (이형반응기 미생물연료전지의 전기적 특성에 미치는 외부저항의 영향)

  • Lee, Myoung-Eun;Jo, Se-Yeon;Chung, Jae-Woo;Song, Young-Chae;Woo, Jung-Hui;Yoo, Kyu-Seon;Lee, Chae-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.3
    • /
    • pp.167-173
    • /
    • 2011
  • The Effects of external resistance on electrical properties such as current density, power density and coulombic efficiency were investigated in two-chamber type MFCs using a ferricyanide as reducing agent. A stable electricity was produced when a constant time elapsed after innoculation of mixed cultures into the anode compartment; voltages from 0.13 to 0.16 V was measured at $50{\Omega}$ of external resistance. When the external resistance was increased, the current density decreased and the power density rapidly increased and then slowly decreased. Big variation of electrical properties was observed in high-current density region due to the concentration loss related with substrate consumption in repeated experiments changing the external resistance. The maximum power density ($175.8mW/m^2$) and coulombic efficiency (46.1%) were obtained at $100{\Omega}$ of the external resistance which is nearest with the internal resistance ($134{\Omega}$) of MFC system.