• 제목/요약/키워드: MFCC(Mel Frequency Cepstral Coefficients)

검색결과 52건 처리시간 0.022초

마이크로폰어레이를 이용한 사용자 정보추출 (Personal Information Extraction Using A Microphone Array)

  • 김혜진;윤호섭
    • 로봇학회논문지
    • /
    • 제3권2호
    • /
    • pp.131-136
    • /
    • 2008
  • This paper proposes a method to extract the personal information using a microphone array. Useful personal information, particularly customers, is age and gender. On the basis of this information, service applications for robots can satisfy users by offering services adaptive to the special needs of specific user groups that may include adults and children as well as females and males. We applied Gaussian Mixture Model (GMM) as a classifier and Mel Frequency Cepstral coefficients (MFCCs) as a voice feature. The major aim of this paper is to discover the voice source parameters of age and gender and to classify these two characteristics simultaneously. For the ubiquitous environment, voices obtained by the selected channels in a microphone array are useful to reduce background noise.

  • PDF

음성 데이터를 활용한 치매 징후 진단 프로그램 개발 (Development of a Dementia Early Detection Program Using Voice Data)

  • 송민지;이민지;김도은;최유진
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.1055-1056
    • /
    • 2023
  • 이 논문은 음성 데이터를 이용하여 치매 징후를 진단하는 프로그램을 개발하는 과정과 결과에 대해 소개한다. MFCC (Mel-frequency cepstral coefficients) 기술을 사용하여 음성 패턴을 추출하고 기계 학습 모델을 적용하여 치매 징후를 탐지하는 방법을 설명한다. 실험 결과는 치매 조기 진단 및 관리에 유용한 음성 기반 도구의 중요성을 강조한다.

멀티모달 특징 결합을 통한 감정인식 연구 (The Research on Emotion Recognition through Multimodal Feature Combination)

  • 김성식;양진환;최혁순;고준혁;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.739-740
    • /
    • 2024
  • 본 연구에서는 음성과 텍스트라는 두 가지 모달리티의 데이터를 효과적으로 결합함으로써, 감정 분류의 정확도를 향상시키는 새로운 멀티모달 모델 학습 방법을 제안한다. 이를 위해 음성 데이터로부터 HuBERT 및 MFCC(Mel-Frequency Cepstral Coefficients)기법을 통해 추출한 특징 벡터와 텍스트 데이터로부터 RoBERTa를 통해 추출한 특징 벡터를 결합하여 감정을 분류한다. 실험 결과, 제안한 멀티모달 모델은 F1-Score 92.30으로 유니모달 접근 방식에 비해 우수한 성능 향상을 보였다.

Bi-Level HMM을 이용한 효율적인 음성구간 검출 방법 (An Efficient Voice Activity Detection Method using Bi-Level HMM)

  • 장광우;정문호
    • 한국전자통신학회논문지
    • /
    • 제10권8호
    • /
    • pp.901-906
    • /
    • 2015
  • 본 논문에서는 Bi-Level HMM을 이용한 음성구간 검출 방법을 제안하였다. 기존의 음성 구간 검출법은 짧은 상태변화 오류(Burst Clipping)를 제거하기 위하여 별도의 후처리 과정을 거치든가, 규칙 기반 지연 프레임을 설정해야만 한다. 이러한 문제에 대처하기 위하여 기존의 HMM 모델에 상태 계층을 추가한 Bi-Level HMM을 이용하여 음성구간 판정을 위해 음성상태의 사후 확률비를 이용하였다. 사람의 청각특성을 고려한 MFCC를 특징치로 하여, 다양한 SNR의 음성 데이터에 대한 평가지표를 활용한 실험을 수행하여 기존의 음성상태 분류법보다 우수한 결과를 얻을 수 있었다.

심음 기반의 심장질환 분류를 위한 새로운 시간영역 특징 (New Temporal Features for Cardiac Disorder Classification by Heart Sound)

  • 곽철;권오욱
    • 한국음향학회지
    • /
    • 제29권2호
    • /
    • pp.133-140
    • /
    • 2010
  • 연속 심음신호로부터 추출한 새로운 시간영역에서의 특징들을 추가하여 심장질환 분류의 성능을 개선한다. 기존에 사용되고 있는 켑스트럼 영역 특징인 멜주파수 켑스트럼 계수 (MFCC)에 심음 포락선, 심잡음 확률벡터, 심잡음 진폭값 변동으로 구성된 새로운 3종류의 시간영역 특징을 추가한다. 심장 질환 분류 및 검출 실험에서, 시간영역 특징의 분류 정확도에 대한 기여도를 평가하고 순차적 특징선택 방식을 이용하여 시간영역 특징을 선택한다. 선택된 특징들은 다층 퍼셉트론(MLP), support rector machine (SVM), extreme learning machine (ELM)와 같은 신경회로망 패턴 분류기에 대하여 의미있고 일관되게 분류 정확도를 개선함을 보여준다.

동적 시간 신축 알고리즘을 이용한 화자 식별 (Speaker Identification Using Dynamic Time Warping Algorithm)

  • 정승도
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2402-2409
    • /
    • 2011
  • 음성에는 전달하고자 하는 정보 이외에 화자 고유의 음향적 특징을 담고 있다. 화자간의 음향적 차이를 이용하여 말하고 있는 사람이 누구인지 판단하는 방법이 화자 인식이다. 화자 인식에는 화자 확인과 화자 식별로 구분되는데 화자 확인은 1명의 음성을 대상으로 본인인지 아닌지를 검증하는 방법이다. 반면, 화자 식별은 미리 등록된 다수의 종속 문장으로부터 가장 유사한 모델을 찾아 대상 의뢰인이 누군지 식별하는 방법이다. 본 논문에서는 MFCC(Mel Frequency Cepstral Coefficient) 계수를 추출하여 특징 벡터를 구성하였고, 특징 간 유사도 비교는 동적 시간 신축(Dynamic Time Warping) 알고리즘을 이용한다. 각 화자마다 두 개의 종속 문장을 훈련 데이터로 사용하여 음운성에 기반을 둔 공통적 특징을 기술하였고, 이를 통해 데이터베이스에 저장되어 있지 않은 단어를 사용하더라도 동일 화자임을 식별할 수 있도록 하였다.

옥타브밴드 순서 통계량에 기반한 음악 장르 분류 (A Musical Genre Classification Method Based on the Octave-Band Order Statistics)

  • 서진수
    • 한국음향학회지
    • /
    • 제33권1호
    • /
    • pp.81-86
    • /
    • 2014
  • 본 논문은 음악신호의 옥타브 밴드 상에서 주파수와 시간 방향의 순서 통계량에 기반한 음악분류기에 대한 연구이다. 음악의 화음 및 강약 구조를 표현하기 위해서 파워스펙트럼의 옥타브 밴드 순서 통계량을 이용하였다. 널리 사용되고 있는 두 음악 데이터셋을 이용한 성능 실험을 통해서, 옥타브 밴드 순서 통계량이 기존의 MFCC 와 옥타브밴드 스펙트럼 고저차 특징에 비해서 두 데이터셋에대해 각각 2.61 %와 8.9 % 장르 분류정확도가 개선되었다. 실험결과는 옥타브 밴드 순서 통계량이 음악 장르 분류에 적합함을 보인다.

Support Vector Machine Based Phoneme Segmentation for Lip Synch Application

  • Lee, Kun-Young;Ko, Han-Seok
    • 음성과학
    • /
    • 제11권2호
    • /
    • pp.193-210
    • /
    • 2004
  • In this paper, we develop a real time lip-synch system that activates 2-D avatar's lip motion in synch with an incoming speech utterance. To realize the 'real time' operation of the system, we contain the processing time by invoking merge and split procedures performing coarse-to-fine phoneme classification. At each stage of phoneme classification, we apply the support vector machine (SVM) to reduce the computational load while retraining the desired accuracy. The coarse-to-fine phoneme classification is accomplished via two stages of feature extraction: first, each speech frame is acoustically analyzed for 3 classes of lip opening using Mel Frequency Cepstral Coefficients (MFCC) as a feature; secondly, each frame is further refined in classification for detailed lip shape using formant information. We implemented the system with 2-D lip animation that shows the effectiveness of the proposed two-stage procedure in accomplishing a real-time lip-synch task. It was observed that the method of using phoneme merging and SVM achieved about twice faster speed in recognition than the method employing the Hidden Markov Model (HMM). A typical latency time per a single frame observed for our method was in the order of 18.22 milliseconds while an HMM method applied under identical conditions resulted about 30.67 milliseconds.

  • PDF

Acoustic Signal based Optimal Route Selection Problem: Performance Comparison of Multi-Attribute Decision Making methods

  • Borkar, Prashant;Sarode, M.V.;Malik, L. G.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.647-669
    • /
    • 2016
  • Multiple attribute for decision making including user preference will increase the complexity of route selection process. Various approaches have been proposed to solve the optimal route selection problem. In this paper, multi attribute decision making (MADM) algorithms such as Simple Additive Weighting (SAW), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP) method and Total Order Preference by Similarity to the Ideal Solution (TOPSIS) methods have been proposed for acoustic signature based optimal route selection to facilitate user with better quality of service. The traffic density state conditions (very low, low, below medium, medium, above medium, high and very high) on the road segment is the occurrence and mixture weightings of traffic noise signals (Tyre, Engine, Air Turbulence, Exhaust, and Honks etc) is considered as one of the attribute in decision making process. The short-term spectral envelope features of the cumulative acoustic signals are extracted using Mel-Frequency Cepstral Coefficients (MFCC) and Adaptive Neuro-Fuzzy Classifier (ANFC) is used to model seven traffic density states. Simple point method and AHP has been used for calculation of weights of decision parameters. Numerical results show that WPM, AHP and TOPSIS provide similar performance.

음향음성학 파라메터를 이용한 이중모음의 분류 (Classification of Diphthongs using Acoustic Phonetic Parameters)

  • 이석명;최정윤
    • 한국음향학회지
    • /
    • 제32권2호
    • /
    • pp.167-173
    • /
    • 2013
  • 본 논문은 이중모음을 분류하기 위한 음향음성학적 파라메터를 연구하였다. 음향음성학적 파라메터는 성도를 통해 음성이 발성될 때 나타나는 특징을 기반으로 하여 분산분석(ANOVA) 방법을 통해 선별한 모음의 길이, 에너지 궤적, 그리고 포먼트의 차이를 이용하였다. TIMIT 데이터 베이스를 사용하였을 때, 단모음과 이중모음만을 구분하는 실험에서는 17.8% 의 밸런스 에러율(BER)을 얻을 수 있었고, /aw/, /ay/, 그리고 /oy/를 단모음과 분류하는 실험에서는 각각 32.9%, 29.9%, 그리고 20.2%의 에러율을 얻을 수 있었다. 추가적으로 진행한 실험에서, 음향음성학적 파라메터와 음성인식에 널리 쓰이고 있는 MFCC를 함께 사용하였을 경우 역시 성능향상이 나타나는 것을 확인하였다.