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ABSTRACT: This work examines classification of diphthongs, as part of a distinctive feature-based speech 
recognition system. Acoustic measurements related to the vocal tract and the voice source are examined, and 
analysis of variance (ANOVA) results show that vowel duration, energy trajectory, and formant variation are 
significant. A balanced error rate of 17.8% is obtained for 2-way diphthong classification on the TIMIT database, 
and error rates of 32.9%, 29.9%, and 20.2% are obtained for /aw/, /ay/, and /oy/, for 4-way classification, respectively. 
Adding the acoustic features to widely used Mel-frequency cepstral coefficients also improves classification.
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초    록: 본 논문은 이중모음을 분류하기 위한 음향음성학적 파라메터를 연구하였다. 음향음성학적 파라메터는 성도

를 통해 음성이 발성될 때 나타나는 특징을 기반으로 하여 분산분석(ANOVA) 방법을 통해 선별한 모음의 길이, 에너

지 궤적, 그리고 포먼트의 차이를 이용하였다. TIMIT 데이터 베이스를 사용하였을 때, 단모음과 이중모음만을 구분하

는 실험에서는 17.8% 의 밸런스 에러율(BER)을 얻을 수 있었고, /aw/, /ay/, 그리고 /oy/를 단모음과 분류하는 실험에

서는 각각 32.9%, 29.9%, 그리고 20.2%의 에러율을 얻을 수 있었다. 추가적으로 진행한 실험에서, 음향음성학적 파라

메터와 음성인식에 널리 쓰이고 있는 MFCC를 함께 사용하였을 경우 역시 성능향상이 나타나는 것을 확인하였다.
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I. Introduction

A knowledge-based speech recognition system 
described by Stevens[1] outlines procedures to find 
linguistic units termed distinctive features from the speech 
signal. Distinctive features include three broad classes, the 
articulator-free features, articulator features, and articulator- 
bound features. Articulator-free features [or manner 
features] describe the type of sound being produced, and 
include the features [vowel], [glide], and [consonant], 
along with the features [continuant], [sonorant] and 

[strident], which further specify the consonant types. 
Articulator features indicate which articulator is used, and 
articulator-bound features describe the different ways the 
articulator can be used. 

Of the class of sounds that are specified by the 
articulator-free feature [vowel], two subtypes are possible. 
Monophthongs are produced with an open vocal tract in a 
steady configuration, and specification of the articulator- 
bound features [high], [low], [back] and [tense] is 
sufficient for distinguishing among the vowels. In contrast, 
diphthongs are characterized by a changing vocal tract 
shape, which includes narrowing of the vocal tract starting 
from an initial open configuration. A diphthong can 
therefore be defined as a smooth transition between two 
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target vowel configurations.[2,3] It can also be defined as a 
sequence of a vowel onset and an offglide, which can be 
represented by two articulator-free features consisting of a 
[vowel] and a [glide], where each part can be further 
described by its associated articulator-bound features. In 
English, the three vowels /aw/, /ay/ and /oy/ are considered 
to be diphthongs. For a complete description of a vowel 
segment in a distinctive-feature based speech recognition 
system, it is necessary to distinguish diphthongs from the 
monophthongs. 

Much research has been conducted on the acoustic 
characteristics of diphthongs, including a well-known 
study by Lehiste and Peterson.[2] More recently, Yang[4] 
reports on an extended study of diphthong acoustics. In 
these and other studies, diphthongs are shown to correlate 
with longer durations and varying formant trajectories, in 
contrast to monophthongs. Carlson et al.[5] includes 
diphthong classification in a study on classification of 
vowels using acoustic characteristics, and a 71% correct 
classification rate can be derived from the reported 
confusion matrix data. However, studies that specifically 
describe classification experiments for diphthongs are rare. 

Therefore, this study aims to investigate diphthong 
characteristics, and to use the associated acoustic phonetic 
parameters for diphthong classification for a distinctive 
feature-based speech recognition system. It is assumed that 
vowel detection has been completed, so that diphthong 
classification is carried out on vowel segments only. 
Acoustic measurements that describe characteristics of 
diphthongs are investigated, along with Mel-Frequency 
Cepstral Coefficients (MFCCs), which are widely used in 
statistical speech recognition systems. Analysis of variance 
(ANOVA)[11] tests are used to assess the significance of 
measurements for diphthong classification, and results for 
2-way discrimination of monophthongs versus diphthongs, 
and 4-way discrimination of monophthongs and /aw/, /ay/, 
and /oy/, are presented.

II. Description of Acoustic 

Measurements

A number of acoustic measurements have been 
investigated for describing diphthongs. Since diphthongs 
consist of a vowel onset and a following offglide, 
measurements that reflect this characteristic are chosen.

Diphthongs are usually longer in duration compared to 
monophthongs, so that vowel duration is expected to be a 
significant acoustic cue. Vowel duration may be found 
from voice activity detection or probability of voicing 
measures, but in this paper, it is assumed that the presence 
of a vowel, and its start and end points, are found in 
advance, so that vowel durations are directly found from 
phone labels. 

Espy-Wilson[6] points out that glides usually have less 
energy in the low- to mid-frequency range compared to 
vowels. Energy trajectories of monophthongs and 
diphthongs are expected to show different patterns. To 
access the difference in the energy trajectory between 
monophthongs and diphthongs, we used to band-limited 
energies in the frequency rages 300-900 Hz, 640-2800 Hz 
and 2000-3000 Hz. The frequency range 640-2800 Hz and 
2000-3000 Hz are examined because Espy-Wilson[6] 
reported that the lower F1 for glides is expected to cause a 
decrease in the amplitudes of the formants in these region. 
Also, first formant region, nominally about 300 to 900 Hz, 
is measured.

In addition, features related to the voice source are 
investigated, such as fundamental frequency (F0), open 
quotient and spectral tilt. Open quotient is calculated as the 
amplitude of the first harmonic relative to that of the 
second harmonic (H1-H2), and spectral tilt is calculated as 
the amplitude of the first harmonic relative to that of the 
third formant spectral peak (H1-A3). Although articulatory 
movements for producing diphthongs are mainly in vocal 
tract shape, it is hypothesized that these movements may 
affect the voice source as well. 

In order to capture the time variation characteristics of 
these acoustic measurements, range, slope, and convexity 
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Table 1. ANOVA results (F-values) for 11 acoustic measurements for the training data set. Entries with probabilities 

greater than P > 0.05 are not significant and marked with a dash (-).

Sec

Measurements mono/diph mono/ay mono/aw mono/oy

Duration Duration 2191 1831 1323 1263

Energy property

RMS slope 335 419 142 -

RMS convexity 296 617 214 291

2000-3000 Hz energy slope 911 761 - 710

2000-3000 Hz energy convexity 1142 1220 221 1302

Formant property

F1 range 2093 2574 470 -

F1 slope 561 810 - -

F1 convexity 1491 1733 488 -

F2 range 2987 2624 651 2202

F2 slope 1377 2123 613 527

F2 convexity 350 191 - 641

of the contours are found. Range is the difference between 
maximum and minimum values, and slope is calculated as 
the ratio of the difference of start and end values to 
duration. Convexity is calculated as the sum of the 
difference between each signal point and the linear 
interpolation between the start and end values of a 
segment. That is,

 






 



where  and  are respectively the start and end times of 

the vowels,   is the value of the measurements at time 
, and   is the linear interpolated function,

 




for  ≤ ≤ , and  ≤ , respectively.

These time variation measures are found for all acoustic 
measurements, except duration. In addition, dip and peak 
locations of overall RMS energy are found, in order to 
capture energy change locations in the signal. 

In this paper, RMS energy, formant frequencies and 
amplitudes, and F0 are found using the Snack program 

package.[7] First and second harmonic amplitudes used in 
calculating open quotient are found by measuring 
amplitudes at the fundamental, and twice the fundamental 
frequency, respectively.

Also, in order to compare with widely used spectral 
measures, Mel-Frequency Cepstral Coefficients (MFCCs) 
are extracted. 13th-order MFCCs are extracted at start and 
end positions of vowels, and delta MFCCs are found as the 
difference between the MFCCs at start and end positions. 
In total, 39th-order MFCCs are used in the experiments.

III. Experimental Results

3.1 Database

The TIMIT[8] corpus contains 6300 utterances spoken 
by 630 speakers from 8 different dialect regions in the 
United States, and includes word and phone labels. For 
diphthong classification, vowel stimuli are extracted, with 
no restrictions in phonetic environment. All three diphthongs 
(/aw/, /ay/ and /oy/), along with 17 monophthongs, are 
included. The excised vowel database consists of 66944 
tokens, with 48395 tokens included in the training set 
(44595 monophthongs, 3800 diphthongs), and 18549 
tokens included in the test set (17213 monophthongs, 1336 
diphthongs). The numbers of /aw/, /ay/ and /oy/ tokens in 
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Table 2. Balanced Error Rates (BERs) for acoustic 

property of 11 acoustic phonetic parameter. The 

results of duration, energy property, formant property,

and 11 acoustic phonetic parameter (all) are represented.

Entries are in percent (%).

BER 

Duration 26.5

Energy property 29.0

Formant property 21.2

All 17.8

the training and test sets are, 729, 2387, and 684, and 216, 
852, and 268, respectively. In this paper, TIMIT phone 
labels are used to find locations for extracting features, at 
the vowel onset and the offglide. In order to reduce 
endpoint effects, start and end locations where features are 
extracted are at 10% and 90% of total duration, measured 
from the beginning of the vowel.

3.2 ANOVA Analysis

The measurements obtained for diphthong classification 
in the TIMIT training set are first examined using 
ANOVA. One-way analysis is performed for each of the 
acoustic measurements, and significant features with 
P<0.05 are found. Results show that measurements for 
band energy in the 300-900 Hz and 640-2800 Hz ranges 
are not significant. Likewise, voice source measurements, 
including F0, open quotient, and spectral tilt measurements 
are all found to be not significant. This implies that vocal 
tract movements do not significantly affect voice source 
characteristics in the case of diphthongs. In all, 11 
significant features are found, and F-values for monophthong 
versus diphthong discrimination, and for discriminating 
each diphthong from monophthongs are shown in Table 1. 
The F-value is computed as the ratio of the between-group 
variance in the data over within-group variance, and 
indicates relative discriminative power between features. 
Entries that are not significant are marked with a dash(-). 
From the results, it can be seen that duration and F2 range 
parameters are significant indicators for all cases. F1 slope 
is discriminative only for /ay/, and F2 convexity is 
discriminative for /oy/. Among the band energy 
measurements, 2000- 3000 Hz energy slope and convexity 
seem to be significant indicators for /ay/ and /oy/.

3.3 Experimental Results

Using acoustic phonetic parameters and/or cepstral 
features, Gaussian Mixture Models (GMMs) with 8 
mixtures which showed optimal performance are trained 
for each task from TIMIT training data. For performance 

evaluation, Balanced Error Rate (BER)[9] is found, in 
addition to overall classification rates. 

The Balanced Error Rate(BER) is the mean of the 
error-rates for each class, and is defined as

   
 











 
.

where   is the number of classes and  is the ×  
confusion matrix, i.e. is the number of times that 
the vowel of class  is mis-classified as class .

The 11 acoustic phonetic parameters, which are listed in 
Table 1, are then used to classify diphthongs in the TIMIT 
test set. Three configurations are considered. First, 2-class 
classification between monophthongs and diphthongs is 
carried out. Next, concurrent 4-class classification 
between monophthongs, and /aw/,/ay/, and /oy/, is 
conducted, and finally, 4-class classification following a 
tree procedure is carried out, where diphthongs are 
separated from monophthongs in the first step, and then 
classified into /aw/, /ay/, and /oy/ in the second step. 

First, results of classification of monophthongs versus 
diphthongs are presented. Using the 11 acoustic phonetic 
parameters results in a BER of 17.8% and 82.0% 
classification rate, which is better than that using 
39th-order MFCCs (with 18.1% and 81.6%, respectively). 
However, using acoustic phonetic parameters in addition 
to MFCCs improves performance, to 14.8% BER and 
84.7% classification rate. This implies that acoustic 
phonetic parameters and MFCCs provide complementary 
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Fig. 1. Context effects on diphthong error rate depending on adjacent (previous and following) phoneme class: 

vowel, glide, nasal and obstruent consonant.

Table 3. Confusion matrices and Balanced Error Rates (BERs) for 4-way (monophthong, /aw/, /ay/, and /oy/) 

concurrent and tree classification methods using acoustic phonetic parameters (a,d), MFCCs (b,e), and acoustic 

phonetic parameter with MFCCs (c,f), respectively. Monophthongs are denoted mono. Entries are in percent (%).

(a) acoustic phonetic parameters (b) MFCCs (c) MFCCs + 
acoustic phonetic parameters

mono aw ay oy rate mono aw ay oy rate mono aw ay oy rate

mono 81.4 8.0 6.1 4.5 81.4 mono 81.2 8.0 6.2 4.6 81.2 mono 85.2 6.3 5.0 3.5 85.2 

aw 27.3 67.1 3.7 1.9 67.1 aw 25.9 68.9 3.3 1.9 68.9 aw 26.9 69.0 3.7 0.5 69.0 

ay 19.7 4.0 70.1 6.3 70.1 ay 16.1 3.2 75.3 5.4 75.3 ay 14.3 4.9 73.4 7.4 73.4 

oy 9.1 1.1 9.9 79.8 79.8 oy 15.2 1.9 16.7 66.2 66.2 oy 7.2 0.8 6.1 85.9 85.9 

Total BER 25.4 Total BER 27.1 Total BER 21.6

(d) acoustic phonetic parameters (e) MFCCs (f) MFCCs + 
acoustic phonetic parameters

mono aw ay oy rate mono aw ay oy rate mono aw ay oy rate

mono 81.2 8.3 5.3 5.2 81.2 mono 82.1 9.8 3.6 4.5 82.1 mono 85.4 8.6 4.1 1.9 85.4 

aw 35.1 59.7 4.1 1.1 59.7 aw 37.6 58.9 1.3 2.2 58.9 aw 28.8 65.1 3.8 2.3 65.1 

ay 15.6 2.8 66.8 14.8 66.8 ay 12.8 2.8 79.4 5.0 79.4 ay 12.6 3.7 79.0 4.7 79.0 

oy 21.2 9.1 2.6 67.1 67.1 oy 22.3 6.2 8.8 62.7 62.7 oy 10.3 3.4 6.7 79.6 79.6 

Total BER 31.3 Total BER 29.2 Total BER 22.7

information in detecting diphthongs. Also, experiments 
were performed to examine the effect of acoustic property. 
11 acoustic phonetic parameters are divided by three 
properties (duration, energy property and formant property) 
depend on its acoustical characteristic. Energy property 
includes RMS slope, RMS convexity, 2000-3000 Hz 
energy slope and 2000-3000 Hz energy convexity. And 
formant property include F1 range, F1 slope, F1 convexity, 
F2 range, F2 slope and F2 convexity. BERs are calculated 
for each property and results are represented in Table 2. 

Formant property showed best performance with BER of 
21.2%, as predicted by ANOVA results. BERs for duration 
and formant property are 26.5 % and 29.0 %, respectively. 
These results indicate that duration and energy property 
are useful for diphthong distinction.

To explore adjacent phoneme effects on diphthong 
discrimination, classification error rates are analyzed 
depending on context. All phones in the TIMIT database 
are divided into four manner classes, i.e. vowels, glides, 
nasals and obstruents, and classification results are 
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Fig. 2. Error rates for monophthongs from 4-way concurrent diphthong classification using acoustic phonetic 

parameters, MFCCs, and acoustic phonetic parameters with MFCCs.

analyzed depending on phoneme class of preceding or 
following segment. Results of context effects are shown in 
Fig. 1. Overall, the highest error rates occur with adjacent 
vowels, and the lowest for adjacent obstruents. Classification 
rates with MFCCs+acoustic phonetic parameters are less 
affected by adjacent phonemes; using only acoustic 
phonetic parameters shows about 9% difference depending 
on adjacent phoneme. 

In the next experiment, 4-way classification is carried 
out to distinguish between monophthongs and the 3 
diphthongs /aw/, /ay/, and /oy/. Tables 3 (a) through (c) 
show confusion matrix results using acoustic phonetic 
parameters, MFCCs, and MFCCs in addition to acoustic 
phonetic parameters, respectively. Classification rates 
using acoustic phonetic parameters for /aw/, /ay/, and /oy/ 
are 32.9%, 29.9%, and 20.2%, respectively, while 
classification rates using acoustic phonetic parameters 
with MFCCs shows 3 to 6% performance improvement for 
all diphthongs. Overall, diphthongs with a /y/ offglide 
show better performance compared to diphthongs with a 
/w/ offglide. Also, more errors occur between monophthongs 
and diphthongs, and less among the diphthongs. 

Next, each diphthong is classified using a tree 
procedure. First, diphthongs are separated from 
monophthongs, and are then classified into one of the three 
diphthongs. Tables 3 (d) through (f) show the resulting 
confusion matrices. Overall, classification rates are 
slightly lower than concurrent 4-way classification. 

Finally, error analysis is performed for concurrent 

4-way classification, and error rates for each monophthong 
vowel are shown in Fig. 2. The analysis is limited to 
monophthongs with more than 200 tokens in the TIMIT 
database, so that /ax-h/, /uw/ and /uh/ are excluded. Results 
show vowels with longer durations[10] such as /aa/, /ey/, 
/ah/ and /ao/, have greater error rates. Also, high vowels 
such as /ih/,/iy/ and /ux/ show lower error rates compared 
to low vowels.

IV. Conclusions

This work examines acoustic phonetic parameters for 
classification of diphthongs in English, as part of a 
distinctive feature-based speech recognition system. Time 
variation characteristics of acoustic measurements related 
to the vocal tract and the voice source are examined, along 
with widely used cepstral coefficient features. From 
ANOVA tests, duration and formant range are found to be 
significant measurements, along with RMS and 2000- 
3000 Hz band energy trajectories. Measurements related to 
the voice source are found to be not significant. 

In the two-class experiments (monophthongs versus 
diphthongs), an overall 17.8% balanced error rate is 
obtained using the proposed acoustic phonetic parameters, 
and 32.9%, 29.9%, and 20.2% error rates are obtained for 
/aw/, /ay/, and /oy/, in the four class experiments 
(discriminating between monophthongs, /aw/, /ay/ and 
/oy/). Concurrent 4-way classification is found to be more 
effective than a tree procedure, where diphthongs are first 
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separated from monophthongs, and are then classified into 
one of the three diphthongs. In addition, adding the 
acoustic phonetic parameters to MFCCs shows performance 
improvement in all cases. 

In this paper, the experiments did not take into account 
contextual information. However, results show that the 
manner class of the previous or following phoneme is 
significant, especially if vowels or glides are adjacent. 
Therefore, normalization methods or compensation for 
adjacent phoneme effects may be necessary. The results of 
this study are expected to be included in an overall vowel 
detection module, as part of a distinctive feature-based 
speech recognition system. 
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