• 제목/요약/키워드: MEMS sensor

검색결과 506건 처리시간 0.025초

바이오응용을 위한 압전 공진형 MEMS 소자

  • 김용범;김형준;강지윤;김태송
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 마이크로/바이오 가시화기술부문 학술강연회
    • /
    • pp.1-7
    • /
    • 2002
  • This papers describes the preparation and experimental results of a micro mass detection devices based on cantilever and a diffuser-type micro pump using screen printing thick-film technologies and Si micro-machining. PZT-PCW thick films were prepared by new hybrid method based on the screen printing. By applying these PZT-PCW piezoelectric thick films on actuator, a cantilever for mass detection sensor and a micropump for microfluidic element are successfully fabricated. Resonant frequency and displacement of PZT-PCW thick film actuator in air and in liquid are measured by laser vibrometer system as a function of actuator size. The resonant frequency of PZT-PCW thick film actuator in liquid decreases order of 1/2-1/4 due to damping effect. The sensitivity of cantilever is characterized by Au deposition method which has the mass loading effect such as adsorption of protein. The Sensitivity of PZT-0.12PCW thick film cantilever is proportional to detecting area.

  • PDF

풍력발전기 블레이드 변형 측정을 위한 액체금속 스트레인 게이지 개발 (Development of Liquid Metal Strain Gauge for Measuring WT Blade's Deformation)

  • 박인겸;서영호;김병희
    • 한국정밀공학회지
    • /
    • 제32권3호
    • /
    • pp.307-314
    • /
    • 2015
  • In this paper, the embedding type novel liquid metal strain gauge was developed for measuring the deformation of wind turbine blades. In general, the conventional methods for the SHM have many disadvantages such as frequency distortion in FBG sensors, the low gauge factor and mechanical failures in strain gauges and extremely sophisticated filtering in AE sensors. However, the liquid metal filled in a pre-confined micro channel shows dramatic characteristics such as high sensitivity, flexibility and robustnes! s to environment. To adopt such a high feasibility of the liquid metal in flexible sensor applications, the EGaIn was introduced to make flexible liquid metal strain gauges for the SHM. A micro channeled flexible film fabricated by the several MEMS processes and the PDMS replication was filled with EGaIn and wire-connected. Lots of experiments were conducted to investigate the performance of the developed strain gauges and verify the feasibility to the actual wind turbine blades health monitoring.

비정질 실리콘 기반의 비냉각형 16x16 적외선 초점면배열의 개발 (Uncooled amorphous silicon 16x16 infrared focal plane arrays development)

  • 전상훈;조성목;양우석;류호준;양기동;유병곤;최창억
    • 센서학회지
    • /
    • 제18권4호
    • /
    • pp.301-306
    • /
    • 2009
  • This paper describes the design and fabrication of 16$\times$16 microbolometer infrared focal plane arrays based on iMEMS technology. Amorphous silicon was used for infrared-sensitive material, and it showed the resistance of 18 Mohm and the temperature coefficient of resistivity of -2.4 %. The fabricated sensors exhibited responsivity of 78 kV/W and thermal time constant of 8.0 msec at a bias voltage of 0.5 V. The array performances had satisfactory uniformity less than 5 % within one-sigma. Also, 1/f noise of pixel was measured and the noise factor of $6\times10^{-11}$ was extracted. Finally, we obtained detectivity of $1.27\times10^9cmHz^{0.5}/W$ and noise equivalent temperature difference of 200 mK at a frame rate of 30 Hz.

다결정 3C-SiC 박막 다이오드의 전기적 특성 (Electrical characteristics of polycrystalline 3C-SiC thin film diodes)

  • 정귀상;안정학
    • 센서학회지
    • /
    • 제16권4호
    • /
    • pp.259-262
    • /
    • 2007
  • This paper describes the electrical characteristics of polycrystalline (poly) 3C-SiC thin film diodes, in which poly 3C-SiC thin films on n-type and p-type Si wafers, respectively, were deposited by APCVD using HMDS, $H_{2}$, and Ar gas at $1150^{\circ}C$ for 3 hr. The schottky diode with Au/poly 3C-SiC/Si (n-type) structure was fabricated. Its threshold voltage ($V_{bi}$), breakdown voltage, thickness of depletion layer, and doping concentration ($N_{D}$) value were measured as 0.84 V, over 140 V, 61 nm, and $2.7{\times}10^{19}cm^{-3}$, respectively. Moreover, for the good ohmic contact, Al/poly 3C-SiC/Si (n-type) structure was annealed at 300, 400, and $500^{\circ}C$, respectively for 30 min under the vacuum condition of $5.0{\times}10^{-6}$ Torr. Finally, the p-n junction diodes fabricated on the poly 3C-Si/Si (p-type) were obtained like characteristics of single 3CSiC p-n junction diode. Therefore, poly 3C-SiC thin film diodes will be suitable for microsensors in conjunction with Si fabrication technology.

압전 재료를 이용한 에너지 변환 시스템의 출력 파워 예측 및 평가 (Prediction and Evaluation of Power Output for Energy Scavengers using the Piezoelectric Material)

  • 오재응;김성현;심현진;이정윤
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.827-830
    • /
    • 2006
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. In the generality of cases, these energy harvesting systems are used in the piezoelectric materials as mechanisms to convert mechanical vibration energy into electric energy. Through the piezoelectric materials, the ambient vibration energy could be used to prolong the power supply or in the ideal case provide endless energy f9r the devices. Therefore, the piezoelectric power harvesting cantilever beam is developed. Also, the output voltage and power are predicted in this study. We also discuss the developing system of the piezoelectric energy scavenger. An experimental verification of the model is also performed to ensure its accuracy.

  • PDF

Easy Detection of Amyloid β-Protein Using Photo-Sensitive Field Effect

  • Kim, Kwan-Soo;Ju, Jong-Il;Song, Ki-Bong
    • 센서학회지
    • /
    • 제21권5호
    • /
    • pp.339-344
    • /
    • 2012
  • This article describes a novel method for the detection of amyloid-${\beta}$($A{\beta}$) peptide that utilizes a photo-sensitive field-effect transistor (p-FET). According to a recent study, $A{\beta}$ protein has been known to play a central role in the pathogenesis of Alzheimer's disease (AD). Accordingly, we investigated the variation of photo current generated from p-FET with and without intracellular magnetic beads conjugated with $A{\beta}$ peptides, which are placed on the p-FET sensing areas. The decrease of photo current was observed due to the presence of the magnetic beads on the channel region. Moreover, a similar characteristic was shown when the Raw 264 cells take in magnetic beads treated with $A{\beta}$ peptide. This means that it is possible to simply detect a certain protein using magnetic beads and a p-FET device. Therefore, in this paper, we suggest that our method could detect tiny amounts of $A{\beta}$ for early diagnosis of AD using the p-FET devices.

PZT 박막의 압전특성에 미치는 공정변수의 효과 (Effect of Process Parameter on Piezoelectric Properties of PZT Thin films)

  • 김동국;지정범
    • 한국전기전자재료학회논문지
    • /
    • 제15권12호
    • /
    • pp.1060-1064
    • /
    • 2002
  • We have studied the effect of crystallization temperature, composition and film thickness, which are the fundamental processing parameters of lead zirconate titanate(PZT) thin film fabrication, in the respect of the piezoelectric properties by our pneumatic loading method(PLM). A great deal of research has been done in the field of characterization for piezoelectric thin films after the first report on the measurement for the piezoelectric coefficient of thin films in 1990. Even though the piezoelectric properties of thin films are very critical factors in the micro-electro mechanical system(MEMS) and thin film sensor devices, a few reports for the piezoelectric characterization are provided for the last decade unlikely the bulk piezoelectric devices. We have found that the piezoelectric properties of thin films are improved as the increase of crystallization temperature up to 750$\^{C}$ and this behavior can be also explained by the analysis of dielectric polarization hysteresis loop, X-ray diffraction and scanning electron microscopy. The effect of Zr/Ti composition has been also studied. This gives us the fact that the maximum piezoelectricity is found near Morphotropic Phase Boundary(MPB) as bulk PZT system does.

자성유체의 온도에 따른 점성 변화를 이용한 미소 유체 소자 (The Microfluidic Device using Viscosity Deviation of Magnetic Fluids Due to Temperature Changes)

  • 최범규;오재근;안정재
    • 센서학회지
    • /
    • 제13권6호
    • /
    • pp.473-478
    • /
    • 2004
  • This study focused on the charateristic of magnetic fluids, the viscosity deviation of magnetic fluids due to temperature changes, and fabrication of a 'purely' liquid type microvalve. The viscosity of magnetic fluids decreases sharply during increasing of temperature. The viscosity of magnetic fluids is rated 1,000 cP at the room temperature and 25 cP when the temperature reaches $100^{\circ}C$. Briefly, it is remarkable that the fluid flow can be controlled by the temperature and this characteristic can be adopted to the microfluidics as a microvalve. The fabrication of a liquid type microvalve is more easy than solid state microvalves and which can increase an efficiency of the controlability with respect to the thermo-pneumatic micropump which is studied broadly for many years. When the magnetic fluid used as a sealant for high level sealing, the pressure leakage is less than solid state microvalve. The experimental results show that the pressure drop in microchannel, filled with the magnetic fluid, is significant in the temperature range of $20^{\circ}C{\sim}50^{\circ}C$ and this result explains why the use of magnetic fluids is possible as a microvalve searcher uses this characteristics. Well known thermo-pnumatic.

표면탄성파를 이용한 자이로스코프 개발 (Development of a SAW based Gyroscope)

  • 오해관;윤성진;이기근;왕웬;양상식
    • 한국군사과학기술학회지
    • /
    • 제12권1호
    • /
    • pp.106-113
    • /
    • 2009
  • This paper presents a surface acoustic wave(SAW) micro-electro-mechanical-systems(MEMS) interdigital transducer (IDT) gyroscope with 80MHz central frequency on a $128^{\circ}\;YX\;LiNbO_3$, which is consisted of a two-port SAW resonator, metallic dots and dual delay lines for the sensor and reference oscillators. Reason for using two delay line oscillators is to extract the gyroscope effect by comparing the resonant frequencies between two oscillators and to compensate the temperature effect. Based on the coupling of modes(COM) simulation, an 80MHz two ports SAW resonator and dual delay line were fabricated and characterized by the network analyzer. Obtained sensitivity was $109Hz/deg{\cdot}s^{-1}$ in the angular rate range of $0{\sim}1000deg/s$. Good Linearity and superior directivity were observed.

A Temperature-Controllable Microelectrode and Its Application to Protein Immobilization

  • Lee, Dae-Sik;Choi, Hyoung-Gil;Chung, Kwang-Hyo;Lee, Bun-Yeoul;Pyo, Hyeon-Bong;Yoon, Hyun-C.
    • ETRI Journal
    • /
    • 제29권5호
    • /
    • pp.667-669
    • /
    • 2007
  • This letter presents a smart integrated microfluidic device which can be applied to actively immobilize proteins on demand. The active component in the device is a temperature-controllable microelectrode array with a smart polymer film, poly(N-isopropylacrylamide) (PNIPAAm) which can be thermally switched between hydrophilic and hydrophobic states. It is integrated into a micro hot diaphragm having an integrated micro heater and temperature sensors on a 2-micrometer-thick silicon oxide/silicon nitride/silicon oxide (O/N/O) template. Only 36 mW is required to heat the large template area of 2 mm${\times}$16 mm to $40^{\circ}C$ within 1 second. To relay the stimulus-response activity to the microelectrode surface, the interface is modified with a smart polymer. For a model biomolecular affinity test, an anti-6-(2, 4-dinitrophenyl) aminohexanoic acid (DNP) antibody protein immobilization on the microelectrodes is demonstrated by fluorescence patterns.

  • PDF