• 제목/요약/키워드: MEMS sensor

검색결과 506건 처리시간 0.033초

구조 건전성 감시를 위한 스마트 가속도계의 성능 평가 (Performance Evaluation of Smart Accelerometers for Structural Health Monitoring)

  • 이진학;오혜선;윤정방
    • 대한토목학회논문집
    • /
    • 제26권4A호
    • /
    • pp.605-609
    • /
    • 2006
  • 이 연구에서는 최근 사회기반시설물의 스마트 모니터링을 위하여 많은 관심을 받고 있는 광섬유 FBG형 가속도계와 MEMS형 가속도계의 적용성을 평가하고자 하였다. 이들의 성능을 비교하기 위하여 저주파수 영역에서 높은 민감도와 신뢰성을 가지고 있는 ICP형 가속도계를 스마트 센서와 동시에 모형구조물에 부착하여 소규모 진동대 실험을 수행하였으며, 계측된 응답을 이용하여 모드해석을 수행함으로써 간접적으로 계측자료의 신뢰성을 비교하였다. 계측자료로부터 구한 모드자료를 이용하여 진단빌딩의 층간 강성을 추정하였다. 추정된 강성의 신뢰성을 검증하기 위하여 기지의 질량을 추가하여 구조물의 특성을 변경시킨 후, 다시 진동대 실험을 수행하여 구한 실험모드해석 결과를 수치해석결과와 비교하였다.

효율적인 각/가속도 센서 오차 보상을 위한 3 축 각도 측정 장치의 개발 및 활용 (Development and Application of Three-axis Motion Rate Table for Efficient Calibration of Accelerometer and Gyroscope)

  • 곽환주;황정문;김정한;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.632-637
    • /
    • 2012
  • This paper introduces a simple and efficient calibration method for three-axis accelerometers and three-axis gyroscopes using three-axis motion rate table. Usually, the performance of low cost MEMS-based inertial sensors is affected by scale and bias errors significantly. The calibration of these errors is a bothersome problem, but the previous calibration methods cannot propose simple and efficient method to calibrate the errors of three-axis inertial sensors. This paper introduces a new simple and efficient method for the calibration of accelerometer and gyroscope. By using a three-axis motion rate table, this method can calibrate the accelerometer and gyroscope simultaneously and simply. Experimental results confirm the performance of the proposed method.

다결정 3C-SiC 마이크로 공진기의 온도 특성 (Fabrication of Pd/poly 3C-SiC Schottky diode hydrogen sensors)

  • 류경일;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.130-130
    • /
    • 2009
  • This paper describes the temperature characteristics of polycrystalline 3C-SiC micro resonators. The 1.2 ${\mu}m$ and 0.4 ${\mu}m$ thick polycrystalline 3C-SiC cantilever and doubly clamped beam resonators with 60 ~ 100 ${\mu}m$ lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at temperature range of $25{\sim}200^{\circ}C$. The TCF(Temperature Coefficient of Frequency) of 60, 80 and 100 ${\mu}m$ long cantilever resonators were -9.79, -7.72 and -8.0 $ppm/^{\circ}C$. On the other hand, TCF of 60, 80 and 100 ${\mu}m$ long doubly clamped beam resonators were -15.74, -12.55 and -8.35 $ppm/^{\circ}C$. Therefore, polycrystalline 3C-SiC resonators are suitable with RF MEMS devices and bio/chemical sensor applications in harsh environments.

  • PDF

Measurements of pedestrian's ioad using smartphones

  • Pan, Ziye;Chen, Jun
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.771-777
    • /
    • 2017
  • The applications of smartphones or other portable smart devices have dramatically changed people's lifestyle. Researchers have been investigating useage of smartphones for structural health monitoring, earthquake monitoring, vibration measurement and human posture recognition. Their results indicate a great potential of smartphones for measuring pedestrian-induced loads like walking, jumping and bouncing. Smartphone can catch the device's motion trail, which provides with a new method for pedestrain load measurement. Therefore, this study carried out a series of experiments to verify the application of the smartphone for measuring human-induced load. Shaking table tests were first conducted in order to compare the smartphones' measurements with the real input signals in both time and frequency domains. It is found that selected smartphones have a satisfied accuracy when measuring harmonic signals of low frequencies. Then, motion capture technology in conjunction with force plates were adopted in the second-stage experiment. The smartphone is used to record the acceleration of center-of-mass of a person. The human-induced loads are then reconstructed by a biomechanical model. Experimental results demonstrate that the loads measured by smartphone are good for bouncing and jumping, and reasonable for walking.

Pixel-Structured Scintillator with Polymeric Microstructures for X-Ray Image Sensors

  • Jung, Im-Deok;Cho, Min-Kook;Bae, Kong-Myeong;Lee, Sang-Min;Jung, Phill-Gu;Kim, Ho-Kyung;Kim, Sung-Sik;Ko, Jong-Soo
    • ETRI Journal
    • /
    • 제30권5호
    • /
    • pp.747-749
    • /
    • 2008
  • We introduce a pixel-structured scintillator realized on a flexible polymeric substrate and demonstrate its feasibility as an X-ray converter when it is coupled to photosensitive elements. The sample was prepared by filling $Gd_2O_2S:Tb$ scintillation material into a square-pore-shape cavity array fabricated with polyethylene. For comparison, a sample with the conventional continuous geometry was also prepared. Although the pixelated geometry showed X-ray sensitivity of about 58% compared with the conventional geometry, the resolving power was improved by about 70% above a spatial frequency of 3 $mm^{-1}$. The spatial frequency at 10% of the modulation-transfer function was about 6 $mm^{-1}$.

  • PDF

TiO2/GOD 혼합물 기반의 글루코스 바이오 센서의 제작과 표면 처리를 통한 감도개선 (Fabrication and Improved Sensitivity with Surface Treatment of TiO2/GOD Mixture based Glucose Biosensor)

  • 이준엽;정동건;이재용;김재건;정대웅;공성호
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.170-174
    • /
    • 2018
  • In this paper, the $TiO_2$/glucose oxidase (GOD) mixture has synthesized through simple and low-cost fabrication methods. The physical properties of the mixture were proved using an FT-IR/NIR spectrometer, an X-Ray diffractometer, and a Raman spectrometer. GOD maintained its bioactivity during all fabrication process. The current characteristics of the glucose biosensor were proportional to the glucose concentration and effective surface area of square pyramid on a silicon substrate. The maximum current change was measured in a pH 7.0 buffer solution. The simple and low-cost fabrication process and surface treatment can be used widely in previous research for improvements in effective surface area.

AHRS IMU 센서를 이용한 이동체의 동적 위치 결정 (Dynamic Position of Vehicles using AHRS IMU Sense)

  • 백기석;이종출;홍순헌;차성렬
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.77-81
    • /
    • 2006
  • GPS cannot determine random errors such as multipath and signal cutoff caused by surrounding environment that determines the visibility of satellites and the speed of data creation and transmission is lower than the speed of vehicles, it is difficult to determine accurate dynamic positions. Thus this study purposed to implement a method of deciding the accurate dynamic position of vehicles by combining AHRS (Attitude Heading Reference System) IMU (Initial Measurement Unit) based on low-priced MEMS (Micro Electro Mechanical System) in order to provide the information of attitude, position and speed at a high transmission rate without external help. This study conducted an initialization test to decide dynamic position using AHRS IMU sensor, and derived attitude correction angles of vehicles against time through regression analysis. The roll angle was $y=(A{\times}10^{-6})x^2 -(B{\times}10^{-5})x+Cr{\times}10^{-2}$ and the pitch angle was $y=(A{\times}10^{-6})x^2-(B{\times}10^{-7})x+C{\times}10^{-2}$, each of which was derived from second-degree polynomial regression analysis. It was also found that the heading angle was stabilized with variation less than $1^{\circ}$ after 60 seconds.

  • PDF

3-1 타입 트리모프 캔틸레버의 마이크로발전 응용기술 개발 (Development of Application Technique for 3-1 Type Triple-morph Cantilever)

  • 김인성;주현규;정순종;김민수;송재성;전소현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1303_1304
    • /
    • 2009
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device. The made 31type triple-morph cantilever was resulted from the conditions of $100k{\Omega}$, 0.25g, 154Hz respectively. The thick film was prepared at the condition of 6.57Vrms, and its power was $432.31{\mu}W$ and its thickness was $50{\mu}m$. And than, the fabricated piezoelectric cantilever was packaged for application.

  • PDF

다결정 3C-SiC 마이크로 공진기의 온도특성 (Temperature Characteristics of Polycrystalline 3C-SiC Micro Resonators)

  • 정귀상;이태원
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.314-317
    • /
    • 2009
  • This paper describes the temperature characteristics of polycrystalline 3C-SiC micro resonators. The $1.2{\mu}m$ and $0.4{\mu}m$ thick polycrystalline 3C-SiC cantilever and doubly clamped beam resonators with $60{\sim}100{\mu}m$ lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at temperature range of $25{\sim}200^{\circ}C$. The TCF(Temperature Coefficient of Frequency) of 60, 80 and 100 On long cantilever resonators were -9.79, -7.72 and -8.0 ppm/$^{\circ}C$. On the other hand, TCF of 60, 80 and $100{\mu}m$ long doubly clamped beam resonators were -15.74, -12.55 and -8.35 ppm/$^{\circ}C$. Therefore, polycrystalline 3C-SiC resonators are suitable with RF MEMS devices and bio/chemical sensor applications in harsh environments.

31 타입 트리모프 켄틸레버의 마이크로 발전 특성 연구 (Micro-power Properties of 31Type Triple-morph Cantilever for Energy Harvesting Device)

  • 김인성;주현규;정순종;김민수;송재성;전소현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.220-221
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device. The made 31 type triple-morph cantilever was resulted from the conditions of 100k$\Omega$, 0.25g, 154Hz respectively. The thick film was prepared at the condition of $6.57V_{rms}$, and its power was $432.31{\mu}W$ and its thickness was $50{\mu}m$.

  • PDF