• Title/Summary/Keyword: MEMS Gyroscope

Search Result 75, Processing Time 0.034 seconds

CMOS Programmable Interface Circuit for Capacitive MEMS Gyroscope (MEMS 용량형 각속도 센서용 CMOS 프로그래머블 인터페이스 회로)

  • Ko, Hyoung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.9
    • /
    • pp.13-21
    • /
    • 2011
  • In this paper, the CMOS programmable interface circuit for MEMS gyroscope is presented, and evaluated with the MEMS sensing element. The circuit includes the front-end charge amplifier with 10 bit programmable capacitor arrays, 9 bit DAC for accurate offset calibration, and 10 bit PGA for accurate gain calibration. The self oscillation loop with automatic gain control operates properly. The offset error and gain error after calibration are measured to be 0.36 %FSO and 0.19 %FSO, respectively. The noise equivalent resolution and bias instability are measured to be 0.016 deg/sec and 0.012 deg/sec, respectively. The calibration capability of this circuit can reduce the variations of the output offset and gain, and this can enhance the manufacturability and can improve the yield.

A study on Quadrature error Reduction of Design Methodology in a Single Drive 3-Axis MEMS Gyroscope (단일 구동 3축 MEMS자이로스코프의 구적 오차 저감을 위한 설계 기법에 관한 연구)

  • Park, Ji Won;Din, Hussamud;Lee, Byeung Leul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.132-137
    • /
    • 2022
  • In this paper, we have studied the quadrature error reduction for the single drive 3-axis MEMS Gyroscope. There was a limitation of the previous study which is the z-axis quadrature error was large. To reduce this value, design methodologies were presented. And the methodologies included a different mesh application, z-rate spring structure change, and mass compensation for balancing of the structure. We conducted the modal analysis, drive mode analysis and sense mode analysis using COMSOL Multiphysics. As a result, a drive resonant frequency was 26003 Hz, with the x-sense, y-sense, z-sense being 26749 Hz, 26858 Hz, 26920 Hz, respectively. And the Mechanical sensitivity was computed at 2000 degrees per second(dps) input angular rate while the sensitivity for roll, pitch, and yaw was computed 0.011, 0.012, and 0.011 nm/dps respectively. And z-axis quadrature error was successfully improved, 2.78 nm to 0.95 nm, which the improvement rate was about 66 %.

Feed-through noise reduction technique for MEMS Gyroscope (MEMS Gyroscope를 위한 feed-through 노이즈 제거 기법)

  • Park, Kyung-Jin;Kang, Seong-Mook;Kim, Ho-Seong;Baek, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1503_1504
    • /
    • 2009
  • MEMS 구조물은 ${\mu}m$단위의 크기로 만들어지므로 각속도계와 같이 정밀한 센서를 만들 때에는 노이즈 문제를 해결하지 않으면 신호를 측정할 수가 없다. MEMS 구조물의 미세한 진동에 의해 발생되는 수 pico-coulomb의 전하를 측정해야하므로 구동 신호가 검출 전극에서 Feed-through되어 나타나는 경우 그 크기가 구동에 의한 신호보다 100배 이상 크기 때문에 원하는 신호를 검출할 수 없다. 본 논문에서는 이러한 Feed-through 현상에 의한 노이즈를 줄이기 위하여 Guard-ring을 이용한 blocking 방법과 dummy port를 이용한 canceling 방법을 고안하고 Feed-through reduction 회로를 설계, 제작, 실험하여 그 효과를 확인하였다. 그 결과 구동신호가 6Vpp, 30kHz일 때, -53.186dBm이었던 Feed-through 신호가 -77.107dBm으로 줄어드는 것을 확인하였다. 또한 노이즈를 제거하지 않은 경우 측정할 수 없었던 Q-factor를 Feed-through reduction 회로를 사용하여 측정한 결과 진공 패키징된 Si 기반 자이로스코프가 공진주파수 약 7.018kHz에서 Q-factor가 약 2500임을 확인하였다.

  • PDF

Dynamic Analysis of Toning-fork Gyroscope (음차자이로의 동적특성 연구)

  • 곽문규;송명호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.92-98
    • /
    • 2003
  • A rate gyroscope has been used popularly to measure the angular motion of a given vehicle using a symmetric rotor spinning rapidly about its symmetry axis. Since the rapid rotation is required in this type of gyroscope, the motor has been used to make the rotor spin, so that it results in a heavy configuration. The toning-fork gyroscope has been developed to avoid this problem, which utilizes a Coriolis coupling term and vibration about one axis. Due to the Coriolis effect, the vibration of one axis is transferred to other axis when the angular motion along the vibrating axis is given to the system. The concept of a tuning-fork gyroscope was recently realized using MEMS techniques. However, the dynamic characteristics of the tuning-fork gyroscope has not been discussed in detail. In this study. we derived the equations of motion for the tuning-fork type gyroscope using the energy approach and investigated the dynamic characteristics by means of numerical analysis.

PD controller design for Micro Gyroscope and Its Performance Test (마이크로 자이로스코프를 위한 PD 제어기 설계 및 성능시험)

  • Sung, Woon-Tahk;Song, Jin-Woo;Lee, Jang-Gyu;Kang, Tae-Sam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.47-56
    • /
    • 2005
  • This paper presents a performance improvement result with the aid of closed feedback controller loop to a micro gyroscope. The dynamic model of a micro gyroscope is derived and a conventional proportional and derivative controller is designed via frequency domain analysis. The proposed control loop is implemented using several analog devices and applied to the SNU-Bosch MEMS gyroscope to check its performance improvement in real environment. The experiments demonstrated the performance improvement with the proposed feedback control loop. The bandwidth, linearity, and bias stability are improved to 78 Hz, 0.504 %, and 0.043 deg/sec, respectively, from 35 Hz, 2.07 %, and 0.066 deg/sec of open loop system.

Performance analysis of feedback controller for vibratory gyroscope at various vacuum levels

  • Sung, Woon-Tahk;Lee, Jang-Gyu;Kang, Tae-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1537-1541
    • /
    • 2003
  • In this paper, presented is a feedback control performance of vibratory gyroscope at various vacuum levels. Micro gyroscope, whose operation is based on the vibrating motion at the vacuum conditions, is highly influenced by the vacuum level of the operating circumstances. In general, we apply the feedback control scheme to the gyroscope in order to improve the performances of the sensor. And control performances of the gyroscope are related to those vacuum levels. So we need investigate the performances of the closed loop control at various vacuum conditions comparing with those of the open loop. The experimental results show that the sensitivity of the closed loop is less than that of the open loop especially in low vacuum conditions. Therefore, there should be trade-off between sensitivity and other sensor performances such as linearity, bandwidth when we apply feedback control to the gyroscope.

  • PDF

Dynamic Analysis of Tuning-Fork Gyroscope (음차자이로의 동적특성 연구)

  • 곽문규;한상보
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.247-252
    • /
    • 2002
  • A rate gyroscope has been used popularly to measure the angular motion of a given vehicle using a symmetric rotor spinning rapidly about its symmetry axis. Since the rapid rotation is required in this type of gyroscope, the motor has been used to make the rotor spin, so that it results in a heavy configuration. The tuning-fork gyroscope has been developed to avoid this problem, which utilizes a coriolis coupling term and vibration about one axis. Because of the coriolis effect, the vibration of one axis is transferred to other axis when the angular motion along the vibrating axis is given to the system. The concept of a tuning-fork gyroscope was recently realized using MEMS techniques. However, the dynamic characteristics of the tuning-fork gyroscope has not been discussed in detail. In this study, we derived the equations of motion for the tuning-fork type gyroscope using the energy approach and investigated the dynamic characteristics by means of numerical analysis.

  • PDF

Indoor Mobile Robot Heading Detection Using MEMS Gyro North Finding Approach (MEMS Gyro North Finding 방법을 이용한 실내 이동로봇의 전방향 탐지)

  • Wei, Yuan-Long;Lee, Min-Cheol;Kim, Chi-Yen
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.334-343
    • /
    • 2011
  • This paper presents a new approach for mobile robot heading detection using MEMS Gyro north finding method in the indoor environment. Based on this, the robot heading angle measurement scheme is proposed; improved north finding theory and algorithm are also explained. Several approaches are applied to confirm system's precision and effectiveness. In order to find out the heading angle, a single axis MEMS gyroscope to sense the angle between the robot heading direction and the north is used. To reach enough estimation accuracy and reduce detection time, the least square method (LSM) for the signal fitting and parameter estimation is applied. Through a turn-table, we setup a carouseling system to decrease the substantial bias effect on gyroscope's heading angle. For the evaluation of the proposed method, this system is implemented to the Pioneer robot platform. The performance and heading error are analyzed after the test. From the simulation and experimental results, system's accuracy, usefulness and adaptability are shown.

Technology of Control Moment Gyroscope and its Industrial Trend (제어 모멘트 자이로의 기술과 산업동향)

  • Lee, Seon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • The well-used actuators for the attitude control of spacecrafts are thruster, reaction wheel, control moment gyroscope, and magnetic torquer. Among them, the control moment gyroscope(CMG) which generates the torque based on the gyroscopic principle in physics, has an advantage of the high torque output compared to the low power consumption. This paper introduces an outline of CMG hardware technology, its application history in spacecrafts, and their associated hardware characteristics. Moreover, its spin-off cases to the other industrial fields such as ship, robotics, and MEMS including their research trend are provided.

Design of MEMS Gyroscope Using Multi Mass System (다중 질량 시스템을 이용한 자이로스코프 설계)

  • Jeon, Seung-Hoon;Lee, June-Young;Jung, Hyoung-Kyoon;Chang, Hyun-Kee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.43-45
    • /
    • 2004
  • In this paper, new design concept of MEMS gyroscope using multi mass system is proposed. The gyroscope having wide bandwidth was designed utilizing the multi mass system in order to reduce the degradation of the performance by resonance variation. The multi mass system has more than two masses and separates the resonant peak of each mass. Using MATLAB, the variation of bandwidth and driving displacement according to mass ratio of the multi mass system was analyzed. This result was compared with that of current single mass system gyroscope. In the 7 kHz resonant frequency design, the multi mass system has 395.3Hz bandwidth, which is six times larger than single mass system bandwidth, 58.5 Hz.

  • PDF