• Title/Summary/Keyword: MEMS 마이크로폰

Search Result 19, Processing Time 0.039 seconds

기술현황분석 - 초소형 MEMS 마이크로폰 기술의 연구 및 특허 동향

  • Jeong, Yeong-Do;Lee, Yeong-Hwa;Heo, Sin
    • 기계와재료
    • /
    • v.23 no.1
    • /
    • pp.82-93
    • /
    • 2011
  • 마이크로폰은 소리를 전기적 신호로 바꾸어주는 청각소자이며, 초소형 마이크로폰의 경우 보청기에서 사용되어 왔을 뿐만 아니라, 최근 들어 개인용 휴대전자기기가 널리 보급되면서 그 수요가 크게 증가하고 있다. 초소형 청각소자 시장에서 MEMS 마이크로폰은 반도체 공정 생산기술의 장점과 더불어 CMOS 신호변환기를 MEMS 마이크로폰의 진동막 구조물과 동일 칩에 통합할 수 있다는 점에서 크게 주목을 받아 왔다. 이 글에서는 초소형 MEMS 마이크로폰의 국내외 기술동향과 특허 동향에 대해 소개하고자 한다.

  • PDF

The research on the MEMS device improvement which is necessary for the noise environment in the speech recognition rate improvement (잡음 환경에서 음성 인식률 향상에 필요한 MEMS 장치 개발에 관한 연구)

  • Yang, Ki-Woong;Lee, Hyung-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1659-1666
    • /
    • 2018
  • When the input sound is mixed voice and sound, it can be seen that the voice recognition rate is lowered due to the noise, and the speech recognition rate is improved by improving the MEMS device which is the H / W device in order to overcome the S/W processing limit. The MEMS microphone device is a device for inputting voice and is implemented in various shapes and used. Conventional MEMS microphones generally exhibit excellent performance, but in a special environment such as noise, there is a problem that the processing performance is deteriorated due to a mixture of voice and sound. To overcome these problems, we developed a newly designed MEMS device that can detect the voice characteristics of the initial input device.

Increase of Side-lobe Level Difference of Spherical Microphone Array by Implementing MEMS Sensor

  • Lee, Jae-Hyung;Choi, Si-Hong;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.816-820
    • /
    • 2011
  • A method for increasing the difference of side-lobe level in spherical microphone array is presented. In array signal processing, it is known that narrow interval between sensors can increase the difference between main lobe and side-lobe of array response which eventually increase the source recognition capability. Recent commercial array being used, however, have shown certain limitation in using the number of sensors due to its costs and geometrical size of array. To overcome this problem, we have adapted MEMS sensors into spherical microphone array. To check out the improvement, two different types of spherical microphone array were designed. One array is composed with 32 regular instrument microphones and the other one is 85 MEMS sensors. Simulation and experiments were conducted on a sinusoidal noise source with two arrays. The time history data were analyzed with spherical harmonic decomposition and beamforming technique. 85 MEMS sensors array showed the improved side-lobe level suppression by more than 4 dB above the frequency content of 2 kHz compared to 32-sensor array.

  • PDF

Design and Fabrication of MEMS Condenser Microphone Using Wafer Bonding Technology (기판접합기술을 이용한 MEMS 컨덴서 마이크로폰의 설계와 제작)

  • Kwon, Hyu-Sang;Lee, Kwang-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1272-1278
    • /
    • 2006
  • This paper presents a novel MEMS condenser microphone with rigid backplate to enhance acoustic characteristics. The MEMS condenser microphone consists of membrane and backplate chips which are bonded together by gold-tin(Au/Sn) eutectic solder bonding. The membrane chip has $2.5mm{\times}2.5mm$, 0.5${\mu}m$ thick low stress silicon nitride membrane, $2mm{\times}2mm$ Au/Ni/Cr membrane electrode, and 3${\mu}m$ thick Au/Sn layer. The backplate chip has $2mm{\times}2mm$, 150${\mu}m$ thick single crystal silicon rigid backplate, $1.8mm{\times}1.8mm$ backplate electrode, and air gap, which is fabricated by bulk micromachining and silicon deep reactive ion etching. Slots and $50{\sim}60{\mu}m$ radius circular acoustic holes to reduce air damping are also formed in the backplate chip. The fabricated microphone sensitivity is 39.8 ${\mu}V/Pa$(-88 dB re. 1 V/Pa) at 1 kHz and 28 V polarization voltage. The microphone shows flat frequency response within 1 dB between 20 Hz and 5 kHz.

A Design of Ultra-low Noise LDO Regulator for Low Voltage MEMS Microphones (저전압 MEMS 마이크로폰용 초저잡음 LDO 레귤레이터 설계)

  • Moon, Jong-il;Nam, Chul;Yoo, Sang-sun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.630-633
    • /
    • 2021
  • Microphones can convert received voice signals to electric signals. They have been widely used in various industries such as radios, smart devices and vehicles. Recently, the demands for small size and high sensitive microphones are increased according to the minimization of wireless earphone with the development of smart phone. A MEMS system is a good candidate for an ultra-small size microphone of a next generation and a read out IC for high sensitive MEMS sensor is researched from many industries and academies. Since the microphone system has a high sensitivity from environment noise and electric system noise, the system requires a low noise power supply and some low noise design techniques. In this paper, a low noise LDO is presented for small size MEMS microphone systems. The input supply voltage of the LDO is 1.5-3.6V, and the output voltage is 1.3V. Then, it can support to 5mA in the light load condition. The integrated output noise of proposed LDO form 20Hz to 20kHz is about 1.9uV. These post layout simulation results are performed with TSMC 0.18um CMOS technology and the size of layout is 325㎛ × 165㎛.

  • PDF

An ASIC implementation of a Dual Channel Acoustic Beamforming for MEMS microphone in 0.18㎛ CMOS technology (0.18㎛ CMOS 공정을 이용한 MEMS 마이크로폰용 이중 채널 음성 빔포밍 ASIC 설계)

  • Jang, Young-Jong;Lee, Jea-Hack;Kim, Dong-Sun;Hwang, Tae-ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.949-958
    • /
    • 2018
  • A voice recognition control system is a system for controlling a peripheral device by recognizing a voice. Recently, a voice recognition control system have been applied not only to smart devices but also to various environments ranging from IoT(: Internet of Things), robots, and vehicles. In such a voice recognition control system, the recognition rate is lowered due to the ambient noise in addition to the voice of the user. In this paper, we propose a dual channel acoustic beamforming hardware architecture for MEMS(: Microelectromechanical Systems) microphones to eliminate ambient noise in addition to user's voice. And the proposed hardware architecture is designed as ASIC(: Application-Specific Integrated Circuit) using TowerJazz $0.18{\mu}m$ CMOS(: Complementary Metal-Oxide Semiconductor) technology. The designed dual channel acoustic beamforming ASIC has a die size of $48mm^2$, and the directivity index of the user's voice were measured to be 4.233㏈.