• 제목/요약/키워드: MEMS(Microelectromechanical Systems)

검색결과 51건 처리시간 0.028초

Microcantilever를 이용한 나노바이오/화학 센서

  • 김태송
    • 세라미스트
    • /
    • 제7권3호
    • /
    • pp.48-54
    • /
    • 2004
  • 반도체 집적화 공정 기술을 바탕으로 기계적 구조물(Micromachined mechanical structure)구현을 가능하게 한 Microelectromechanical systems (MEMS) 기술은 최근 들어 새로운 연구분야로서 크게 각광받고 있다. 이러한 MEMS 기술은 자동차, 산업, 의공학, 정보과학 등에 폭넓게 응용되고 있으며 실리콘 가공 기술 및 미세전기소자 (Microelectronics) 기술이 융합되어 전기$.$기계적인 미세소자를 제작하는데 널리 이용되고 있다. (중략)

  • PDF

의료 및 생물학에 응용되는 MEMS기술 (Applications of MEMS Technology on Medicine & Biology)

  • 장준근;정석;한동철
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.108-113
    • /
    • 2002
  • The application fields of medicine and biology are spotlighted because of the increasing concentration of health and the abundance of life. MEMS is very good solution in this fields for the concept of point of care which makes systems more useful and spread wide. This paper shows the major fabrication schemes and application fields of microelectromechanical system specially in medicine and biology fields.

Novel graphene-based optical MEMS accelerometer dependent on intensity modulation

  • Ahmadian, Mehdi;Jafari, Kian;Sharifi, Mohammad Javad
    • ETRI Journal
    • /
    • 제40권6호
    • /
    • pp.794-801
    • /
    • 2018
  • This paper proposes a novel graphene-based optical microelectromechanical systems MEMS accelerometer that is dependent on the intensity modulation and optical properties of graphene. The designed sensing system includes a multilayer graphene finger, a laser diode (LD) light source, a photodiode, and integrated optical waveguides. The proposed accelerometer provides several advantages, such as negligible cross-axis sensitivity, appropriate linearity behavior in the operation range, a relatively broad measurement range, and a significantly wider bandwidth when compared with other important contributions in the literature. Furthermore, the functional characteristics of the proposed device are designed analytically, and are then confirmed using numerical methods. Based on the simulation results, the functional characteristics are as follows: a mechanical sensitivity of 1,019 nm/g, an optical sensitivity of 145.7 %/g, a resonance frequency of 15,553 Hz, a bandwidth of 7 kHz, and a measurement range of ${\pm}10g$. Owing to the obtained functional characteristics, the proposed device is suitable for several applications in which high sensitivity and wide bandwidth are required simultaneously.

Low-Noise MEMS Microphone Readout Integrated Circuit Using Positive Feedback Signal Amplification

  • Kim, Yi-Gyeong;Cho, Min-Hyung;Lee, Jaewoo;Jeon, Young-Deuk;Roh, Tae Moon;Lyuh, Chun-Gi;Yang, Woo Seok;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.235-243
    • /
    • 2016
  • A low-noise readout integrated circuit (ROIC) for a microelectromechanical systems (MEMS) microphone is presented in this paper. A positive feedback signal amplification technique is applied at the front-end of the ROIC to minimize the effect of the output buffer noise. A feedback scheme in the source follower prevents degradation of the noise performance caused by both the noise of the input reference current and the noise of the power supply. A voltage booster adopts noise filters to cut out the noise of the sensor bias voltage. The prototype ROIC achieves an input referred noise (A-weighted) of -114.2 dBV over an audio bandwidth of 20 Hz to 20 kHz with a $136{\mu}A$ current consumption. The chip is occupied with an active area of $0.35mm^2$ and a chip area of $0.54mm^2$.

0.18㎛ CMOS 공정을 이용한 MEMS 마이크로폰용 이중 채널 음성 빔포밍 ASIC 설계 (An ASIC implementation of a Dual Channel Acoustic Beamforming for MEMS microphone in 0.18㎛ CMOS technology)

  • 장영종;이재학;김동순;황태호
    • 한국전자통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.949-958
    • /
    • 2018
  • 음성 인식 제어 시스템은 사용자의 음성을 인식하여 주변 장치를 제어하는 시스템이다. 최근 음성 인식 제어 시스템은 스마트기기 뿐만 아니라, IoT(: Internet of Things), 로봇, 차량에 이르기까지 다양한 환경에 적용되고 있다. 이러한 음성 인식 제어 시스템은 사용자의 음성 외에 주변 잡음에 의한 인식률 저하가 발생한다. 이에 본 논문은 사용자의 음성 외에 주변 잡음을 제거하기 위하여 MEMS(: Microelectromechanical Systems) 마이크로폰용 이중 채널 음성 빔포밍 하드웨어 구조를 제안하였으며, 제안한 하드웨어 구조를 TowerJazz $0.18{\mu}m$ CMOS(: Complementary Metal-Oxide Semiconductor) 공정을 이용하여 ASIC(: Application-Specific Integrated Circuit)을 설계하였다. 설계한 이중 채널 음성 빔포밍 ASIC은 $48mm^2$의 Die size를 가지며, 사용자의 음성에 대한 지향성 특성을 측정한 결과 4.233㏈의 특성을 보였다.

Demonstration of Alternative Fabrication Techniques for Robust MEMS Device

  • Chang, Sung-Pil;Park, Je-Young;Cha, Doo-Yeol;Lee, Heung-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제7권4호
    • /
    • pp.184-188
    • /
    • 2006
  • This work describes efforts in the fabrication and testing of robust microelectromechanical systems (MEMS). Robustness is typically achieved by investigating non-silicon substrates and materials for MEMS fabrication. Some of the traditional MEMS fabrication techniques are applicable to robust MEMS, while other techniques are drawn from other technology areas, such as electronic packaging. The fabrication technologies appropriate for robust MEMS are illustrated through laminated polymer membrane based pressure sensor arrays. Each array uses a stainless steel substrate, a laminated polymer film as a suspended movable plate, and a fixed, surface micromachined back electrode of electroplated nickel. Over an applied pressure range from 0 to 34 kPa, the net capacitance change was approximately 0.14 pF. An important attribute of this design is that only the steel substrate and the pressure sensor inlet is exposed to the flow; i.e., the sensor is self-packaged.

MEMS 기술을 이용한 Flexible Module (Flexible Modules Using MEMS Technology)

  • 김용준;황은수;김용호;이태희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.223-227
    • /
    • 2003
  • A new flexible electronic packaging technology and its medical applications are presented. Conventional silicon chips and electronic modules can be considered as "mechanically rigid box." which does not bend due to external forces. This mechanically rigid characteristic prohibits its applications to wearable systems or bio-implantable devices. Using current MEMS (Microelectromechanical Systems) technology. a surface micromachined flexible polysilicon sensor array and flexible electrode array fer neural interface were fabricated. A chemical thinning technique has been developed to realize flexible silicon chip. To combine these techniques will result in a realization of truly flexible sensing modules. which are suitable for many medical applications.

  • PDF

Applications of MEMS-MOSFET Hybrid Switches to Power Management Circuits for Energy Harvesting Systems

  • Song, Sang-Hun;Kang, Sungmuk;Park, Kyungjin;Shin, Seunghwan;Kim, Hoseong
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.954-959
    • /
    • 2012
  • A hybrid switch that uses a microelectromechanical system (MEMS) switch as a gate driver of a MOSFET is applied to an energy harvesting system. The power management circuit adopting the hybrid switch provides ultralow leakage, self-referencing, and high current handling capability. Measurements show that solar energy harvester circuit utilizing the MEMS-MOSFET hybrid switch accumulates energy and charges a battery or drive a resistive load without any constant power supply and reference voltage. The leakage current during energy accumulation is less than 10 pA. The power management circuit adopting the proposed hybrid switch is believed to be an ideal solution to self-powered wireless sensor nodes in smart grid systems.

MEMS 소재의 기계적 특성 평가를 위한 인장형 시편 및 시험기 제작 (A Novel Tensile Specimen and Test Machine for Mechanical Properties of MEMS Materials)

  • 박준협;김정엽;이창승;좌성훈;송지호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.258-263
    • /
    • 2004
  • Mechanical property evaluation of micrometer-sized structures is necessary to help design reliable microelectromechanical systems(MEMS) devices. Most material properties are known to exhibit dependence on specimen size and such properties of microscale structures are not well characterized. This paper describes techniques developed for tensile testing of materials used in MEMS. Epi-polycrystalline silicon is currently the most widely used material, and its tensile strength has been measured as 1.52GPa. We have developed an uniaxial testing machine for testing microscale specimen using electro-magnetic actuator. The field magnet and the moving coil taken from an audio-speaker were utilized as the components of the actuator. Structure of specimen was designed and manufactured for easy handling and alignment. In addition to the static tensile tests, new techniques and procedures for measuring strength are described.

  • PDF