• 제목/요약/키워드: MEMS(Micro Electro-Mechanical Systems)

검색결과 146건 처리시간 0.023초

하이브리드 타입 초소형 가스터빈엔진 개발 및 초도 시운전 (Preliminary Study of Hybrid Micro Gas Turbine Engine)

  • 서준혁;최주찬;권길성;백제현
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.24-30
    • /
    • 2016
  • In this study, a 2W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and experimental investigations of its potential under actual combustion conditions were performed. A micro-gas turbine (MGT) contains a turbo-charger, combustor, and generator. Compressor and turbine blades, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control (CNC) machined static air bearing, and a permanent magnet was attached to the end of the shaft for generation. A heat transfer analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor's high temperature, which was verified in an actual experiment. The generator performance test showed that it can generate 2W at design rotational speed. Prototype micro-gas turbine generated maximum 1 mW electric power and lasted up to 15 minutes.

MEMS RF Switch의 연구동향 및 응용

  • 송인산
    • 한국전자파학회지:전자파기술
    • /
    • 제13권2호
    • /
    • pp.22-32
    • /
    • 2002
  • MEMS(Micro-Electro-Mechanical Systems)는 전기적인 구성요소와 기계적인 구성요소를 작게 조합하여 구성한 소자나 시스템을 말한다. RF(Radio Frequency) MEMS는 MEMS를 이용한 RF 소자나 시스템을 의미하며, 본 고에서는 RF 소자에 대하여 논의하고자 한다. MEMS는 RF 소자의 성능, 기능, 집적화 등을 높여 주고, 크기, 가격, 부피, 전력 소모 등을 낮추어 주므로 소자 개발에 대한 연구는 매우 다양하지만, 본 고에서는 움직이는 소자 중에서 가장 많이 연구되고 있는 mechanical RF switch에 대하여 중점적으로 다루고자 한다. 이에 대한 연구 동향, 특성, 응용 분야 등을 살펴보고, 상품으로서의 가치를 인정 받기 위하여 고려해야 할 점들을 논의 하겠다.

SAM 코팅층의 미소마찰거동에 관한 연구 (Frictional Behavior of SAM Coated Silicon)

  • 차금환;김대은
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.19-23
    • /
    • 2000
  • Stiction is an undesirable phenomenon that can be encountered often in Micro-Electro Mechanical Systems (MEMS) applications, In order to minimize this effect, Self-Assembled Monolayers (SAM) are commonly used. In this work the frictional characteristics of SAM are investigated using both micro-tribotester and SPM. It was found that the performance of SAM is quite sensitive to coating condition. The experimental results show promise for SAM to be used in sliding applications of micro systems.

  • PDF

A Review on Cooling Technologies for Micro and Miniature Devices and Systems

  • Yoon, Jae-Sung;Choi, Jong-Won;Kim, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제15권2호
    • /
    • pp.70-77
    • /
    • 2007
  • As electric and mechanical devices have been miniaturized and highly integrated, heat generation per unit volume has been greatly increased. Therefore, effective cooling methods for micro and miniature systems have emerged as critical issues nowadays and a lot of studies have been carried out to find an optimum cooling strategy. This paper reviews recent researches on the cooling technologies which are mainly based on micro-fabrication processes. Design, development, experiments and numerical analysis of various cooling devices are discussed and their characteristics, problems and advantages are compared.

An exact solution for mechanical behavior of BFRP Nano-thin films embedded in NEMS

  • Altabey, Wael A.
    • Advances in nano research
    • /
    • 제5권4호
    • /
    • pp.337-357
    • /
    • 2017
  • Knowledge of thin films mechanical properties is strongly associated to the reliability and the performances of Nano Electro Mechanical Systems (NEMS). In the literature, there are several methods for micro materials characterization. Bulge test is an established nondestructive technique for studying the mechanical properties of thin films. This study improve the performances of NEMS by investigating the mechanical behavior of Nano rectangular thin film (NRTF) made of new material embedded in Nano Electro Mechanical Systems (NEMS) by developing the bulge test technique. The NRTF built from adhesively-bonded layers of basalt fiber reinforced polymer (BFRP) laminate composite materials in Nano size at room temperature and were used for plane-strain bulging. The NRTF is first pre-stressed to ensure that is no initial deflection before applied the loads on NRTF and then clamped between two plates. A differential pressure is applying to a deformation of the laminated composite NRTF. This makes the plane-strain bulge test idea for studying the mechanical behavior of laminated composite NRTF in both the elastic and plastic regimes. An exact solution of governing equations for symmetric cross-ply BFRP laminated composite NRTF was established with taking in-to account the effect of the residual strength from pre-stressed loading. The stress-strain relationship of the BFRP laminated composite NRTF was determined by hydraulic bulging test. The NRTF thickness gradation in different points of hemisphere formed in bulge test was analysed.

Improvement of a Low Cost MEMS-based GPS/INS, Micro-GAIA

  • Fujiwara, Takeshi;Tsujii, Toshiaki;Tomita, Hiroshi;Harigae, Masatoshi
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.265-270
    • /
    • 2006
  • Recently, inertial sensors like gyros and accelerometers have been quite miniaturized by Micro Electro-Mechanical Systems (MEMS) technology. JAXA is developing a MEM-based GPS/INS hybrid navigation system named Micro-GAIA. The navigation performance of Micro-GAIA was evaluated through off-line analysis by using flight test data. The estimation errors of the roll, pitch, and azimuth were $0.03^{\circ}$, $0.05^{\circ}$, $0.05^{\circ}$ $(1{\sigma})$, respectively. he horizontal position errors after 60-second GPS outages were reduced to 25 m CEP. The attitude errors and position errors are nearly half of ones reported previously[2]. Furthermore, using the adaptive Kalman filters, the robustness against the uncertainty of the measurement noise was improved. Comparing the innovation-based and residual-based adaptive Kalman filters, it was confirmed that the latter is robuster than the former.

  • PDF

초소형 가스터빈엔진 열전달 현상의 수치적 및 실험적 연구 (Numerical and Experimental Analysis of Micro Gas Turbine Heat Transfer Effect)

  • 서준혁;권길성;최주찬;백제현
    • 대한기계학회논문집B
    • /
    • 제39권2호
    • /
    • pp.153-159
    • /
    • 2015
  • 본 연구에서는 MEMS기술을 적용한 2W급 초소형 가스터빈엔진의 개발과 실제 연소 환경에서의 발전 가능성을 해석적, 실험적으로 입증하였다. 초소형 가스터빈엔진은 터보차저, 연소기, 발전기로 이루어져 있다. 터보차저는 각각 직경 10mm와 9mm의 MEMS 공정 압축기와 터빈으로 구성되어 있으며 발전코일 또한 MEMS공정으로 설계되었다. 제작된 압축기와 터빈은 정밀 기계 가공된 축과 공기 베어링으로 지지되고 회전하며, 회전축 끝단에 영구자석을 설치하여 발전을 하게 된다. 공기 베어링과 압축기를 통한 냉각 효과를 해석하여 연소기에서 발생한 열을 충분히 차단할 수 있는 것으로 분석되었고, 이를 실험을 통해 검증하였다.

Packaging MEMS, The Great Challenge of the $21^{st}$ Century

  • Bauer, Charles-E.
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2000년도 Proceedings of 5th International Joint Symposium on Microeletronics and Packaging
    • /
    • pp.29-33
    • /
    • 2000
  • MEMS, Micro Electro-Mechanical Systems, present one of the greatest advanced packaging challenges of the next decade. Historically hybrid technology, generally thick film, provided sensors and actuators while integrated circuit technologies provided the microelectronics for interpretation and control of the sensor input and actuator output. Brought together in MEMS these technical fields create new opportunities for miniaturization and performance. Integrated circuit processing technologies combined with hybrid design systems yield innovative sensors and actuators for a variety of applications from single crystal silicon wafers. MEMS packages, far more simple in principle than today's electronic packages, provide only physical protection to the devices they house. However, they cannot interfere with the function of the devices and often must actually facilitate the performance of the device. For example, a pressure transducer may need to be open to atmospheric pressure on one side of the detector yet protected from contamination and blockage. Similarly, an optical device requires protection from contamination without optical attenuation or distortion being introduced. Despite impediments such as package standardization and complexity, MEMS markets expect to double by 2003 to more than $9 billion, largely driven by micro-fluidic applications in the medical arena. Like the semiconductor industry before it. MEMS present many diverse demands on the advanced packaging engineering community. With focused effort, particularly on standards and packaging process efficiency. MEMS may offer the greatest opportunity for technical advancement as well as profitability in advanced packaging in the first decade of the 21st century! This paper explores MEMS packaging opportunities and reviews specific technical challenges to be met.

  • PDF

열간 압출 공정에 의한 직경 $500{\mu}m$ 마이크로 부품 성형 (Micro forming technology for micro parts below $500{\mu}m$ in diameter by n hot extrusion process)

  • 이경훈;이상진;김병민
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.417-420
    • /
    • 2007
  • Micro parts are usually used of producing by micro-electro-mechanical systems(MEMS). In this paper, we present some fundamental results concerning on the MEMS, extrusion condition on the micro forming characteristics and new micro forward extrusion machine has been developed. In the first step, we manufactured micro dies in two kinds of sections. One is a circle section, another is a cross section. The process for fabricating micro dies combines a deep UV-lithography, anisotropic etching techniques and metal electroplating with bulk silicon based on Ni with a thickness of $50{\mu}m$. The outer diameter of Ni-micro dies is 3mm and the diameter of extrusion section is $270{\mu}m$ for a cross section, $500{\mu}m$ for a circle section. The low linear density polyethylene(LLEPD) in the shape of a pellet has been used of micro extrusion. The billet was placed in a container manufactured by electric discharge machining and extruded through the micro die by a piezoelectric actuator. The micro extrusion has succeeded in a forming such micro parts as micro bars, micro cross shafts.

  • PDF

TEM sample preparation using micro-manipulator for in-situ MEMS experiment

  • Hyunjong Lee;Odongo Francis Ngome Okello;Gi-Yeop Kim;Kyung Song;Si-Young Choi
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.8.1-8.7
    • /
    • 2021
  • Growing demands for comprehending complicated nano-scale phenomena in atomic resolution has attracted in-situ transmission electron microscopy (TEM) techniques for understanding their dynamics. However, simple to safe TEM sample preparation for in-situ observation has been limited. Here, we suggested the optical microscopy based micro-manipulating system for transferring TEM samples. By adopting our manipulator system, several types of samples from nano-wires to plate-like thin samples were transferred on micro-electro mechanical systems (MEMS) chip in a single step. Furthermore, the control of electrostatic force between the sample and the probe tip is found to be a key role in transferring process.