A Review on Cooling Technologies for Micro and Miniature Devices and Systems

  • Yoon, Jae-Sung (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Choi, Jong-Won (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Kim, Min-Soo (School of Mechanical and Aerospace Engineering, Seoul National University)
  • Published : 2007.06.30


As electric and mechanical devices have been miniaturized and highly integrated, heat generation per unit volume has been greatly increased. Therefore, effective cooling methods for micro and miniature systems have emerged as critical issues nowadays and a lot of studies have been carried out to find an optimum cooling strategy. This paper reviews recent researches on the cooling technologies which are mainly based on micro-fabrication processes. Design, development, experiments and numerical analysis of various cooling devices are discussed and their characteristics, problems and advantages are compared.



  1. Peng, X. F. and Peterson, G. P., 1996, Convective heat transfer and flow friction for water flow in microchannel structures, Int. J. Heat Mass Transfer, Vol. 39, No. 12, pp. 2599-2608 https://doi.org/10.1016/0017-9310(95)00327-4
  2. Qu, W. and Mudawar, I., 2002, Prediction and Measurement of incipient boiling heat flux in micro-channel heat sinks, Int. J. Heat Mass Transfer, Vol. 45, pp.3933-3945 https://doi.org/10.1016/S0017-9310(02)00106-0
  3. Peng, X. F. and Wang, B. X., 1998, Forced-convection and boiling characteristics in microchannels, Proceedings of 11th IHTC, Kyongju, Korea, August 23-28, Vol. 1, pp. 371-390
  4. Bowers, M. B. and Mudawar, I., 1994, High flux boiling in low flow rate, low pressure drop mini -channel and micro-channel heat sinks, Int. J. Heat Mass Transfer, Vol. 37, No.2, pp.321-332 https://doi.org/10.1016/0017-9310(94)90103-1
  5. Zhang, L., Koo, J. M., Jiang, L., Banerjee, S. S., Ashegi, M., Goodson, K. E., Santiago, J. G., and Kenny, T. W., 2000, Measurement and modeling of two-phase flow in micro-channels with nearly-constant heat flux boundary conditions, in: A. Lee et al. (Eds.), Micro-electro-mechanical Systems (MEMS) 2000, MEMS-Vol. 2, ASME, Orlando, FL, pp. 129-135
  6. Hetsroni, G., Mosyak, A., and Segal, Z., 2001, Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels, IEEE Transactions on components and packaging technologies, Vol. 24, No.1, pp. 16-23 https://doi.org/10.1109/6144.910797
  7. Qu, W. and Mudawar, I., 2002, Transport phenomena in two-phase micro-channel heat sinks, Proceedings of IMECE2002, ASME International Mechanical Engineering Congress & Exposition, New Orleans, Louisiana, November 17-22, IMECE2002-33711
  8. Wu, X. Y. and Cheng, P., 2003, Visualization and measurements of periodic boiling in silicon microchannels, Int. J. Heat Mass Transfer, Vol. 46, pp.2603-2614 https://doi.org/10.1016/S0017-9310(03)00039-5
  9. Hetsroni, G., Mosyak, A., Segal, Z., and Pogrebnyak, E., 2003, Two-phase flow patterns in parallel micro-channels, International Journal of Multiphase Flow, Vol. 29, pp.341-360 https://doi.org/10.1016/S0301-9322(03)00002-8
  10. Peles, Y. P. and Haber, S., 2000, A steady state, one dimensional, model for boiling two phase flow in triangular micro-channel, Int. J. Multiphase flow, Vol. 26, pp. 1095-1115 https://doi.org/10.1016/S0301-9322(99)00084-1
  11. Thome, J. R., Dupont, V., and Jacobi, A. M., 2004, Heat transfer model for evaporation in microchannels. Part I: presentation of the model, Int. J. Heat Mass Transfer, Vol. 47, pp. 3375-3385 https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.006
  12. Ryu, J. H., Choi, D. H., and Kim, S. J., 2003, Three-dimensional numerical optimization of a manifold microchannel heat sink, Int. J. Heat Mass Transfer, Vol. 46, pp. 1553-1562 https://doi.org/10.1016/S0017-9310(02)00443-X
  13. Tonomura, O., Tanaka, S., Noda, M., Kano, M., Hasebe, S., and Hashimoto, I., 2004, CFD-based optimal design of manifold in plate-fin microdevices, Chemical Engineering Journal, Vol. 101, pp.397-402 https://doi.org/10.1016/j.cej.2003.10.022
  14. Commenge, J. M., Falk, L., Corriou, J. P., and Matlosz, M., 2002, Optimal design for flow uniformity in microchannel reactors, AIChE Journal, Vol. 48, No.2, pp.345-358 https://doi.org/10.1002/aic.690480218
  15. Kulkarni, T., Bullard, C. W., and Cho, K., 2004, Header design tradeoffs in microchannel evaporators, Applied Thermal Engineering, Vol. 24, pp. 759-776 https://doi.org/10.1016/j.applthermaleng.2003.10.016
  16. Khrustalev, D. and Faghri, A., 1996, Estimation of the maximum heat flux in the inverted meniscus type evaporator of a flat miniature heat pipe, Int. J. Heat Mass Transfer, Vol. 39, No.9, pp. 1899-1909 https://doi.org/10.1016/0017-9310(95)00270-7
  17. Maziuk, V., Kulakov, A., Rabetsky, M., Vasiliev, L., and Vukovic, M., 2001, Miniature heat-pipe thermal performance prediction tool-software development, Applied Thermal Engineering, Vol. 21, pp.559-571 https://doi.org/10.1016/S1359-4311(00)00066-1
  18. Lin, L., Ponnappan, R., and Leland, J., 2002, High performance miniature heat pipe, Int. J. Heat Mass Transfer, Vol. 45, pp. 3131-3142 https://doi.org/10.1016/S0017-9310(02)00038-8
  19. Berre, M. Le, Launay, S., Sartre, V., and Lallemand, M., 2003, Fabrication and experimental investigation of silicon micro heat pipes for cooling electronics, J. Micromech. Microeng, Vol. 13, pp. 436-441 https://doi.org/10.1088/0960-1317/13/3/313
  20. Peterson, G. P., Duncan, A. B., and Weichold, M. H., 1993, Experimental investigation of micro heat pipes fabricated in silicon wafers, J. Heat Trans., Vol. 115, pp.751-756 https://doi.org/10.1115/1.2910747
  21. Launay, S., Sartre, V., and Lallemand, M., 2004, Experimental study on silicon micro-heat pipe arrays, Applied Thermal Engineering, Vol. 24, pp.233-243 https://doi.org/10.1016/j.applthermaleng.2003.08.003
  22. Murer, S., Lybaert, P., Gleton, L., and Sturbois, A., 2005, Experimental and numerical analysis of the transient response of a miniature heat pipe, Applied Thermal Engineering, Vol. 25, pp. 2566-2577 https://doi.org/10.1016/j.applthermaleng.2004.11.024
  23. Berre, M. Le, Pandraud, G., Morfouli, P., and Lallemand, M., 2006, The performance of micro heat pipes measured by integrated sensors, J. Micromech. Microeng, Vol. 16, pp. 1047-1050 https://doi.org/10.1088/0960-1317/16/5/023
  24. Ameel, T. A., Warrington, R. O., Wegeng, R. S., and Drost, M. K., 1997, Miniaturization technologies applied to energy systems, Energy Convers. Mgmt., Vol. 38, No. 10-13, pp. 969-982
  25. Munkejord, S. T., Mehlum, H. S., Zakeri, G. R., Neksa, P., and Pettersen, J., 2002, Micro technology in heat pumping systems, Int. J. Refrigeration, Vol. 25, pp. 471-478 https://doi.org/10.1016/S0140-7007(00)00036-0
  26. Drost, M. K., Friedrich, M., Martin, C., Martin, J., and Hanna, B., 1999, Mesoscopic heat-actuated heat pump development, Proc. of ASME Advanced Energy Systems Division, November 14-19, 1999, Nashville, U.S.A, pp. 9-14
  27. Choi, C., Ko, J., and Jeong, S., 2004, Experimental study on the development of micro sorption refrigerator, Proc. of the SAREK 2004 Winter Annual Conference, November 24, 2004, Seoul, Korea, pp. 602-606
  28. Selby, J. C., Shannon, M. A., Xu, K., and Economy, J., 2001, Sub-micrometer solid-state adhesive bonding with aromatic thermosetting copolyesters for the assembly of polyimide membranes in silicon-based devices, J. Micromech. Microeng., Vol. 11, pp. 672-685 https://doi.org/10.1088/0960-1317/11/6/308
  29. Narayanan, S. P. and Venkatarathnam, G., 1999, Analysis of performance of heat exchangers used in practical micro miniature refrigerators, Cryogenics, Vol. 39, pp.517-527 https://doi.org/10.1016/S0011-2275(99)00055-7
  30. Darabi, J. and Ekula, K., 2003, Development of a chip-integrated micro cooling device, Microelectronics J., Vol. 34, pp. 1067-1074 https://doi.org/10.1016/j.mejo.2003.09.010
  31. Gromoll, B., 1998, Micro cooling systems for high density packaging, Rev. Gen. Therm., Vol. 37, pp.781-787 https://doi.org/10.1016/S0035-3159(98)80004-4
  32. Richter, M., Linnemann, R., and Woias, P., 1998, Robust design of gas and liquid micro-pumps, Sensors and Actuators A, Vol. 68, pp. 480-486 https://doi.org/10.1016/S0924-4247(98)00053-3
  33. Stehr, M., Messner, S., Sandmaier, H., and Zengerle, R., 1996, The VAMP-a new device for handling liquids or gases, Sensors and Actuators A, Vol. 57, pp. 153-157 https://doi.org/10.1016/S0924-4247(97)80106-9
  34. Schabmueller, C. G. J., Koch, M., Mokhtari, M. E., Evans, A. G. R., Brunnschweiler, A., and Sehr, H., 2002, Self-aligning gas/liquid micropump, J. Micromech. Microeng., Vol. 12, pp, 420-424 https://doi.org/10.1088/0960-1317/12/4/313
  35. Yoon, J. S. and Kim, M. S., 2005, Performance analysis of a silicon-based micropump for gases, Proc. of The Sixth KSME-JSME Thermal and Fluids Engineering Conference, March 20-23, 2005, Jeju, Korea, Paper No. CJ02
  36. Yoon, J. S., Choi, J. W., and Kim, M. S., 2006, A study on the micro vapor compressor based on microfabrication process for the application to the micro miniature refrigeration system, Proc. of the SAREK 2006 Summer Annual Conference, June 21-23, 2006, Pyongchang, Korea, pp.477-482
  37. Organ, A. J., 1999, The miniature, reversed Siirling cycle cryo-cooler: integrated simulation of performance, Cryogenics, Vol. 39, pp. 253-266 https://doi.org/10.1016/S0011-2275(99)00020-X
  38. Bapat, S. L., 2000, Theoretical investigations on simultaneous operation of vapour compression refrigeration cycle and Stirling cycle in miniature Stirling cooler with two-component two-phase mixture, Cryogenics, Vol. 40, pp.1-8 https://doi.org/10.1016/S0011-2275(00)00003-5
  39. Yoo, J. H., Hong, J. I., and Cao, W., 2000, Piezoelectric ceramic bimorph coupled to thin metal plate as cooling fan for electronic devices, Sensors and Actuators, Vol. 79, pp.8-12 https://doi.org/10.1016/S0924-4247(99)00249-6
  40. Nika, P., Bailly, Y., Jeannot, J. C., and Labachelerie, M. D. 2003, An integrated pulse tube refrigeration device with micro exchangers: Design and experiments, Int. J. Thermal Sciences, Vol. 42, pp. 1029-1045 https://doi.org/10.1016/S1290-0729(03)00081-4
  41. Holland, H. J., Burger, J. F., Boersma, N., ter Brake, H. J. M., and Rogalla, H., 1998, Miniature 10-150 mW Linde-Hampson cooler with glass-tube heat exchanger operating with nitrogen, Cryogenics, Vol. 38, No.4, pp.407-410 https://doi.org/10.1016/S0011-2275(98)00031-9