• Title/Summary/Keyword: MELATONIN

Search Result 271, Processing Time 0.031 seconds

The regulation of Mg2+ efflux by melatonin in perfused guinea pig hearts (관류 기니픽 심장에서 melatonin에 의한 Mg2+ 유리 조절)

  • Chang, Hyo-jin;Youk, Ji-hea;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.3
    • /
    • pp.319-325
    • /
    • 2001
  • Several recent studies demonstrate that cAMP accumulation evokes marked changes in magnesium ($Mg^{2+}$) homeostasis. The goal of this study was to investigate the effect of melatonin, the principal hormone of the vertebral pineal gland, on $Mg^{2+}$ regulation in perfused guinea pig hearts. We hypothesized that melationin would regulate $Mg^{2+}$ efflux induced by adrenergic drugs and cAMP analogues because melatonin inhibites adneylate cyclase (AC) and phospholipase C(PLC) in the hearts. The $Mg^{2+}$ content in the perfusate was significantly higher in the presence than in the absence of melatonin. The addition of forskolin, isoproterenol or dimaprit to perfused hearts induced a marked $Mg^{2+}$ efflux. These effluxes were not inhibited by melatonin. The $Mg^{2+}$ efflux could also be induced by phenylephrine, a ${\alpha}_1$-adrenoceptor agonist. This phenylephrine-induced $Mg^{2+}$ efflux was inhibited by melatonin. In addition, the phenylephrine-induced $Mg^{2+}$ efflux was potentiated by PMA, a protein kinase C(PKC) activator. This $Mg^{2+}$ efflux was inhibited by melatonin. In conclusion, these data suggest that melatonin regulates $Mg^{2+}$ homeostasis and the inhibitory effect of melatonin on ${\alpha}_1$-adrenoceptor-stimulated $Mg^{2+}$ efflux may occur through an inhibition of PLC pathway in perfused guinea pig hearts.

  • PDF

Effects of Melatonin and Fluid Shear Stress on 3T3-L1 Preadipocytes (3T3-L1 지방전구세포에서 멜라토닌과 유체전단응력의 영향)

  • Lee, Jeongkun;Lee, Yeong Hun;Park, Chae Lim;Kim, Chi Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.3
    • /
    • pp.109-115
    • /
    • 2018
  • Obesity is a worldwide disease caused by the excessive proliferation of adipocytes. Multiple factors, including melatonin and physical loading, are involved in the control of obesity. Melatonin has been shown to induce apoptosis on preadipocytes while physical loading such as fluid shear stress (FSS) affects the proliferation and differentiation of adipocytes. Here, we studied the combined effects of melatonin and FSS on 3T3-L1 preadipocytes. For physical loading, preadipocytes were stimulated with a maximum dynamic fluid shear stress of 1 Pa at 1 Hz for 2 hours with/without melatonin. The experiment conditions were divided into four groups: (1) control, (2) 1 mM melatonin treatment, (3) FSS, and (4) combined 1 mM melatonin and FSS. All groups had a fixed duration time of 2 hours. ERK, p-ERK, COX-2, $C/EBP{\beta}$, $PPAR{\gamma}$, osteopontin, Bax, caspase-3 and caspase-8 proteins were assessed by Western blot analysis. GAPDH was used as a control. Results showed that combined melatonin and FSS treatment activated the ERK/MAPK pathway but not COX-2. Furthermore, combined melatonin and FSS treatment significantly decreased $C/EBP{\beta}$ and $PPAR{\gamma}$ compared to other groups. However, caspase-3 and caspase-8 did not result in significant changes. In summary, combined melatonin and FSS appears to have the potential to inhibit adipogenesis and treat obesity.

Circadian rhythm of melatonin secretion and growth-related gene expression in the tiger puffer Takifugu rubripes

  • Kim, Byeong-Hoon;Hur, Sung-Pyo;Hur, Sang-Woo;Takeuchi, Yuki;Takemura, Akihiro;Lee, Young-Don
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.8
    • /
    • pp.17.1-17.8
    • /
    • 2017
  • Somatostatin (SS) and growth hormone-releasing hormone (GHRH) are primary factors regulating growth hormone (GH) secretion in the pituitary. To date, it remains unknown how this rhythm is controlled endogenously, although there must be coordination of circadian manners. Melatonin was the main regulator in biological rhythms, and its secretion has fluctuation by photic information. But relationship between melatonin and growth-related genes (ghrh and ss) is unclear. We investigated circadian rhythms of melatonin secretion, ghrh and ss expressions, and correlation between melatonin with growth-related genes in tiger puffer Takifugu rubripes. The melatonin secretion showed nocturnal rhythms under light and dark (LD) conditions. In constant light (LL) condition, melatonin secretion has similar patterns with LD conditions. ss1 mRNA was high during scotophase under LD conditions. But ss1 rhythms disappeared in LL conditions. Ghrh appeared opposite expression compared with melatonin levels or ss1 expression under LD and LL. In the results of the melatonin injection, ghrh and ss1 showed no significant expression compared with control groups. These results suggested that melatonin and growth-related genes have daily or circadian rhythms in the tiger puffer. Further, we need to know mechanisms of each ss and ghrh gene regulation.

Antinociceptive Effects of Intrathecal Melatonin on Formalin- and Thermal-induced Pain in Rats (포르말린 및 열성 자극 유발 통증에 대한 척수강 Melatonin의 항침해 효과)

  • Chung, Sung Tae;Jin, Won Jong;Bae, Hong Beom;Kim, Seok Jai;Choi, Jeong Il;Kang, Myung Woo;Jeong, Chang Young;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.19 no.2
    • /
    • pp.137-141
    • /
    • 2006
  • Background: It has been known that melatonin is involved in the modulation of nociceptive transmission. However, the effect of melatonin administered spinally has not been examined. Therefore, we examined the effect of melatonin on the formalin-induced or thermal-induced nociception at the spinal level. Methods: Intrathecal catheter was inserted into the subarachnoid space of male Sprague-Dawley rats. Pain was assessed by formalin test (induced by injection of $50{\mu}l$ of a 5% formalin solution to the hindpaw) or Hot-Box test (induced by radiant heat application to the hindpaw). The effect of intrathecal melatonin was examined on flinching behavior in the formalin test or withdrawal response in Hot-Box test. Results: Intrathecal melatonin produced a limited, but dose-dependent reduction of the flinching response during phase 1 and 2 in the formalin test. In addition, melatonin delivered at evening also decreased the flinching response in both phases of the formalin test. Melatonin restrictively increased the withdrawal latency in Hot-Box test. Conclusions: These results suggest that melatonin is active against the formalin- and thermal-induced nocicpetion at the spinal level, but the effect is limited.

Effects of Melatonin on Improvement of Neurological Function in Focal Cerebral Ischemic Rats

  • Lee, Seung-Hoon;Shin, Jin-Hee;Lee, Min-Kyung;Lee, Sang-Kil;Lee, Sang-Rae;Chang, Kyu-Tae;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.167-174
    • /
    • 2011
  • Acute ischemic stroke results from sudden decrease or loss of blood supply to an area of the brain, resulting in a coinciding loss of neurological function. The antioxidant action of melatonin is an important mechanism among its known effects to protective activity during ischemic/reperfusion injury. The focus of this research, therapeutic efficacy of melatonin on recovery of neurological function following long term treatment in ischemic brain injured rats. Male Sprague-Dawley rats (n=40; 8 weeks old) were divided into the control group, and MCAo groups (Vehicle, MT7 : MCAo+ melatonin injection at 7:00, MT19 : MCAo+melatonin injection at 19:00, and MT7,19 : MCAo+melatonin injection at 7:00 and 19:00). Rat body weight and neurological function were measured every week for 8 weeks. After 8 weeks, the rats were anesthetized with a mixture of zoletil (40 mg/kg) and xylazine (10 mg/kg) and sacrificed for further analysis. Tissues were then collected for RNA isolation from brain tissue. Also, brain tissues were analyzed by histological procedures. We elucidated that melatonin was not toxic in vital organs. MT7,19 was the most rapidly got back to mild symptom on test of neurological parameter. Also, exogenous melatonin induces both the down-regulation of detrimental genes, such as NOSs and the up-regulation of beneficial gene, including BDNF during long term administration after focal cerebral ischemia. Melatonin treatment reduced the loss of primary motor cortex. Therefore, we suggest that melatonin could be act as prophylactic as well as therapeutic agent for neurorehabilitative intervention.

Phospholipase C-mediated vasorelaxing action of melatonin in rat isolated aorta (흰쥐 대동맥에서 phospholipase C를 경유한 melatonin의 혈관 이완 작용)

  • Kim, Shang-Jin;Baek, Sung-Soo;Kang, Hyung-Sub;Kim, Jin-Shang
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.4
    • /
    • pp.507-515
    • /
    • 2005
  • Melatonin, the principal hormone of the vertebral pineal gland, participates in the regulation of cardiovascular system in vitro and in vivo. However, the effects of melatonin on vascular tissues are still vague. The aim of this study was to assess the relationship between phospholipase C (PLC) and nitric oxide synthase (NOS)/cyclic guanosine 3',5'-monophosphate (cGMP) signaling cascade in the relaxatory action of melatonin in isolated rat aorta. Melatonin induced a concentration-dependent relaxation in phenylephrine (PE)- and KCl-precontracted endothelium intact (+E) aortic rings. In KCl-precontracted +E aortic rings, the melatonin-induced vasorelaxation was not inhibited by endothelium removal or by pretreatment with NOS inhibitors, L-$N^G$-nitor-arginine (L-NNA) and L-$N^G$-nitor-arginine methyl ester (L-NAME), guanylate cyclase (GC) inhibitors, methylene blue (MB) and 1H-[1,2,4] oxadiazolo-[4,3-a] quinoxalin-1-one (ODQ). In PE-precontracted +E aortic rings, the melatonin-induced vasorelaxation was inhibited by endothelium removal or by pretreatment with L-NNA, L-NAME, MB, ODQ and 2-nitro-4-carboxyphenyl-n,n-diphenylcarbamate (NCDC). Moreover, in without endothelium (-E) aortic rings and in the presence of L-NNA, L-NAME, MB and ODQ in +E aortic rings, the melatonin-induced residual relaxations and residual contractile responses to PE were not affected by NCDC, a PLC inhibitor. It is concluded that melatonin can evoke vasorelaxation due to inhibition of PLC pathway through the protein kinase G activation of endothelial NOS/cGMP signaling cascade.

A Study for the Expression of Melatonin Receptor Gene and Reproductive Indices in Golden Hamsters Exposed to Photoperiods (골든 햄스터에서 광주기에 따른 멜라토닌 수용체 유전자 발현과 생식 지수들에 관한 연구)

  • Choi, Donchan;Choi, Hyungjae;Lim, Sinae;Park, Changeun
    • Development and Reproduction
    • /
    • v.6 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • Reproductive activity of golden hamsters(Mesocricetus auratus) is regulated by the photoperiod. They are sexually active in summer and inactive in winter. Melatonin, a pineal hormone, has been known to mediate sexual activities in seasonal breeding animals. Melatonin receptor was recently identified in several animal species including hmm. But little has been known about it in relation to the reproductive activities of golden hamsters. By using reverse transcription polymerase chain reaction(RT-PCR) methods, a portion of the melatonin receptor gene(309 nucleotides) was identified in golden hamsters. The nucleotide sequence of the melatonin receptor and the amino acid sequence deduced were compared to those reported in other animals. Melatonin receptors were obviously detected in hypothalamus, pituitary containing pars tuberalis, blood, and spleen. Although the testicular weights and the levels of reproductive hormones were dramatically affected by photoperiods, the expression of melatonin receptor was not markedly changed by them. These results suggest that the action of melatonin in regulating reproduction might be mainly due to the affinity of melatonin receptor rather than the density fi melatonin receptor.

  • PDF

Effect of LPS and melatonin on early development of mouse embryo

  • Park, Haeun;Jang, Hoon;Choi, Youngsok
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.183-192
    • /
    • 2022
  • Lipopolysaccharide (LPS) is an endotoxin factor present in the cell wall of Gram-negative bacteria and induces various immune responses to infection. Recent studies have reported that LPS induces cellular stress in various cells including oocytes and embryos. Melatonin (N-acetyl-5-methoxytryptamine) is a regulatory hormone of circadian rhythm and a powerful antioxidant. It has been known that melatonin has an effective function in scavenging oxygen free radicals and has been used as an antioxidant to reduce the cytotoxic effects induced by LPS. However, the effect of melatonin on LPS treated early embryonic development has not yet been confirmed. In this study, we cultured mouse embryos in medium supplemented with LPS or/and melatonin up to the blastocyst stage in vitro and then evaluated the developmental rate. As a result of the LPS-treatment, the rate of blastocyst development was significantly reduced compared to the control group in all the LPS groups. Next, in the melatonin only treated group, there was no statistical difference in embryonic development and no toxic effects were observed. And then we found that the treatment of melatonin improved the rates of compaction and blastocyst development of LPS-treated embryos. In addition, we showed that melatonin treatment decreased ROS levels compared to the LPS only treated group. In conclusion, we demonstrated the protective effect of melatonin on the embryonic developmental rate reduced by LPS. These results suggest a direction to improve reproduction loss that may occur due to LPS exposure and bacterial infection through the using of melatonin during in vitro culture.

Melatonin Enhances Hepatic Glutathione-peroxidase Activity in Sprague-Dawley Rats

  • Kim, Choong-Yong;Yun, Choong-Soon;Park, Dae-Hun;Choi, Woo-Sung;Kim, Jin-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.221-224
    • /
    • 1997
  • Effects of melatonin on hepatic glutathione-peroxidase (GSH-Px) and glutathione-reductase (GSH-reductase) activities were studied in Sprague-Dawley (SD) rats administered i.p. (10 mg/kg body weight) with melatonin during 15 days. The activity of cytosolic GSH-reductase in the liver was not changed by melatonin. However, melatonin injection increased significantly the activity of liver cytosolic GSH-Px activity compared with those in saline-treated rats. At the same time, plasma GSH-Px was also increased significantly in melatonin-treated rats. Since GSH-Px, a major antioxidative enzyme, removes $H_2O_2$ and lipid peroxides which are formed during lipid peroxidation from cellular membrane, such elevation of heptatic GSH-Px activity may contribute to the improvement of antioxidative effects under oxidative damage in the liver.

  • PDF

The Potential of Melatonin for the Application in Dairy Products (멜라토닌의 기능성 및 유제품 활용)

  • Song, Minyu;Park, Won Seo;Yoo, Jayeon;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.14-25
    • /
    • 2018
  • Melatonin, an indolic tryptophan-derived compound, is secreted rhythmically from the pineal gland, mainly under the regulation of the circadian clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Melatonin is widely present in nature, with biological activities in unicellular organisms, plants, and animals. A major function of melatonin is to transmit information to organisms about certain physiological functions in response to daily and seasonal variations in their environment. In this paper, we review a variety of melatonin's functional properties, its occurrence in plants, and its synthesis by yeasts. Fermented milk supplemented with melatonin-rich plants and yeasts can be used for the effective treatment of sleep disorders.