• Title/Summary/Keyword: MEGA

Search Result 835, Processing Time 0.024 seconds

Study on the Motion Control of Tall Buliding Using Mega-Sub System (주(主)-부(副)구조 시스템을 이용한 초고층 건물의 진동제어에 관한 연구)

  • 김진구;송영훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.29-35
    • /
    • 1997
  • The megastructure combined with the modular concept is an effcient structural system adequate for ultra-tail buildings for the future. An ingeneous structural control system can be developed by separating the internal subframe in one or many modules from the external megaframe, thus taking advantage of the effect of tuned mass dampers without adding any aditional mass. This so called mega-subcontrol system is generally modeled by a 20DF system for parametric study and for finding optimal values of the parameters. In this study the equation of motion for the system is obtained frist and the preconditions for the simplified modeling are investigated. Finally the optimal value for the subsreucture strffness is fomputed with given mass and damping ratios and transfer functions for responses are abtained for white noise ground exitation to verify the effectiveness of the mega-subcontrol system.

  • PDF

Case Study on Mega Foundations of Domestic and Foreign Super High-Rise Buildings (국내외 초고층 건축물의 대단면 매트기초 시공사례와 분석)

  • Park, Young-Seok;Lee, Hai-Chool;Kim, Kyoung-Min;Cho, Chang-Shik;Rhim, Hong-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.17-19
    • /
    • 2010
  • This paper describes the possibility of the raft thickness reduction for mega foundations system of super high-rise buildings through a case study on domestic and foreign super high-rise buildings. In case of super high-rise buildings, the size of foundations, especially raft becomes wider and deeper because of heavy upper load. It is difficult to pour concrete of this kind of mega foundation, and cracks by hydration heat could happen. Therefore, there are several ways to reduce the raft thickness of mega foundations. Piled-raft could be the one because moment and shear load that the raft subjects on by soil reaction are lower. The effect of the piled-raft foundation on the raft thickness reduction could be confirmed by comparison of super high-rise buildings with pile, piled-raft and mat foundation. Furthermore, it was showed that the raft thickness could be more reduced by locating piles right under the vertical members of super structures.

  • PDF

Seismic response analysis of mega-scale buckling-restrained bracing systems in tall buildings

  • Gholipour, Mohammadreza;Mazloom, Moosa
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.17-34
    • /
    • 2018
  • Tall buildings are categorized as important structures because of the large number of occupants and high construction costs. The choice of competent lateral load resisting systems in tall buildings is of crucial importance. Bracing systems have long been an economic and effective method for resisting lateral loads in steel structures. However, there are some potential adverse aspects to bracing systems such as the limitations they inflict on architectural plans, uplift forces and poor performances in compression. in order to eliminate the mentioned problems and for cost optimization, in this paper, six 20-story steel buildings and frames with different types of bracing, i.e., conventional, mega-scale and buckling-restrained bracing (BRB) were analyzed. Linear and modal push-over analyses were carried out. The results pointed out that Mega-Scale Bracing (MSB) system has significant superiority over the conventional bracing type. The MSB system is 25% more economic. Some other advantages of MSB include: up to 63% less drift ratio, up to 38% better performance in lateral displacement, up to 100% stiffer stories, and about 50% smaller uplift forces. Moreover, MSB equipped with BRB attests even a better seismic behavior in the aforementioned parameters.

A Multi-Level Integrator with Programming Based Boosting for Person Authentication Using Different Biometrics

  • Kundu, Sumana;Sarker, Goutam
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1114-1135
    • /
    • 2018
  • A multiple classification system based on a new boosting technique has been approached utilizing different biometric traits, that is, color face, iris and eye along with fingerprints of right and left hands, handwriting, palm-print, gait (silhouettes) and wrist-vein for person authentication. The images of different biometric traits were taken from different standard databases such as FEI, UTIRIS, CASIA, IAM and CIE. This system is comprised of three different super-classifiers to individually perform person identification. The individual classifiers corresponding to each super-classifier in their turn identify different biometric features and their conclusions are integrated together in their respective super-classifiers. The decisions from individual super-classifiers are integrated together through a mega-super-classifier to perform the final conclusion using programming based boosting. The mega-super-classifier system using different super-classifiers in a compact form is more reliable than single classifier or even single super-classifier system. The system has been evaluated with accuracy, precision, recall and F-score metrics through holdout method and confusion matrix for each of the single classifiers, super-classifiers and finally the mega-super-classifier. The different performance evaluations are appreciable. Also the learning and the recognition time is fairly reasonable. Thereby making the system is efficient and effective.

A Platform Design Study of Intelligent Program Management Information System (iPMIS) (지능형 종합사업관리 시스템 플랫폼 디자인 방안에 관한 연구)

  • Yeom, Ji-Woong;Kim, Ju-Hyung;Ahn, Byung-Ju;Kim, Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.716-719
    • /
    • 2008
  • Yongsan International business Center, Incheon Songdo City, Roppongihill sand Midtown, including the most of latest internal and external construction projects become larger and more complicated than before. Mega project is one of most complicated project type as public and private sectors involve and the space will be construed in all directions i.e. horizontal, vertical, underground and ground. Therefore mega projects need a new program management information system to start the project's success. So this paper proposes a platform design study to intelligent program management information systems to mange mega projects.

  • PDF

Studies on restoring force model of concrete filled steel tubular laced column to composite box-beam connections

  • Huang, Zhi;Jiang, Li-Zhong;Zhou, Wang-Bao;Chen, Shan
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1217-1238
    • /
    • 2016
  • Mega composite structure systems have been widely used in high rise buildings in China. Compared to other structures, this type of composite structure systems has a larger cross-section with less weight. Concrete filled steel tubular (CFST) laced column to box-beam connections are gaining popularity, in particular for the mega composite structure system in high rise buildings. To enable a better understanding of the destruction characteristics and aseismic performance of these connections, three different connection types of specimens including single-limb bracing, cross bracing and diaphragms for core area of connections were tested under low cyclic and reciprocating loading. Hysteresis curves and skeleton curves were obtained from cyclic loading tests under axial loading. Based on these tested curves, a new trilinear hysteretic restoring force model considering rigidity degradation is proposed for CFST laced column to box-beam connections in a mega composite structure system, including a trilinear skeleton model based on calculation, law of stiffness degradation and hysteresis rules. The trilinear hysteretic restoring force model is compared with the experimental results. The experimental data shows that the new hysteretic restoring force model tallies with the test curves well and can be referenced for elastic-plastic seismic analysis of CFST laced column to composite box-beam connection in a mega composite structure system.

A Case Study on Corporate Strategy Focused at Product Differentiation and Public Policy for the Enhancement of Industrial Structure: Korea's Trade Policy towards the Mega FTA (제품차별화 중심의 기업전략과 산업구조고도화 중심의 공공정책에 대한 연구: Mega FTA에 대한 한국의 통상정책을 중심으로)

  • Hwang, Hae-Du;Shin, Hyeon-Joo
    • Korea Trade Review
    • /
    • v.44 no.4
    • /
    • pp.205-220
    • /
    • 2019
  • This article recapitulates the recent changes in trade laws, which may be accentuated due to the intriguing emergence of fortified protectionism and Mega FTAs. It points out the need to formulate not only the corporate strategy for enhancing the product differentiation and architectural capabilities but also the public policy, which comprises the industrial adjustment policy to cope with possible negative impulses caused by the digital trade and foreign direct investment. It is imperative for Korea to facilitate the alignment between corporate strategy and industrial adjustment policy as an effective means of enhancing industrial structure by nurturing those linkage effects between relevant forward and backward industries. Given the drastically volatile trade norms of multi-track trade policies, it may be a pivotal momentum for Korea to pursue a paradigm shift of its trade policy with a prime objective of achieving such an alignment between corporate strategy and industrial adjustment policy, which affords increased value-added and the further development of product or generic technology instead of resorting to the misuses and abuses of economies of scale and production technology for the maximization of export amount.

Axial behavior of RC column strengthened with SM-CFST

  • Jiang, Haibo;Li, Jiahang;Cheng, Quan;Xiao, Jie;Chen, Zhenkan
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.773-784
    • /
    • 2022
  • This paper aims to investigate the axial compressive behavior of reinforced concrete (RC) columns strengthened with self-compacting and micro-expanding (SM) concrete-filled steel tubes (SM-CFSTs). Nine specimens were tested in total under the local axial compression. The test parameters included steel tube thickness, filling concrete strength, filling concrete type and initial axial preloading. The test results demonstrated that the initial stiffness, ultimate bearing capacity and ductility of original RC columns were improved after being strengthened by SM-CFSTs. The ultimate bearing capacity of the SM-CFST strengthened RC columns was significantly enhanced with the increase of steel tube thickness. The initial stiffness and ultimate bearing capacity of the SM-CFST strengthened RC columns were slightly enhanced with the increase of filling concrete strength. However, the effect of filling concrete type and initial axial preloading of the SM-CFST strengthened RC columns were negligible. Three equations for predicting the ultimate bearing capacity of the SM-CFST strengthened RC columns were compared, and the modified equation based on Chinese code (GB 50936-2014) was more precise.

Displacement Response Analysis According to the Outrigger System Arrangement of the Twisted High-Rise Building (아웃리거 시스템 적용에 따른 Twisted 초고층 건물의 변위응답분석)

  • Hwang, Il-Geun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.75-82
    • /
    • 2024
  • Since atypical high-rise buildings are vulnerable to gravity loads and seismic loads, various structural systems must be applied to ensure the stability of the structure. In this study, the authors selected a 60-story twisted-shaped structure among atypical high-rise structures as an analytical model to investigate its structural behavior concerning the outrigger system. The structural analyses were performed varying the number of installed layers and the arrangement of the outrigger system, as well as the placement of the mega column, as design variables. The analysis revealed that the most effective position for the outrigger was 0.455H from the top layer, consistent with previous studies. Additionally, connecting outriggers and mega columns significantly reduced the displacement response of the model. From an economic standpoint, it is deemed efficient to connect and install outriggers and mega columns at the structure's ends.

Shear strength of match-cast-free dry joint in precast girders

  • Jiang, Haibo;Feng, Jiahui;Xiao, Jie;Chen, Mingzhu;Liang, Weibin
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.161-173
    • /
    • 2020
  • Shear keys in precast concrete segmental bridges (PCSBs) are usually match-casting which is very labour intensive. In this research, an innovative match-casting-free construction was proposed by leaving small gap between the convex and the concave castellated shear keys in the joints of PCSBs. Specimen experiment, shear strength analysis and numerical simulation were conducted, investigating the loading performance of this new type of dry joints, the gap dry joints. Compared with match-casting joint specimens, it has been found from experiment that shear capacity of gap joint specimens significantly decreased ranging from 17.75% to 42.43% due to only partially constrained and contacted in case of gap dry joints. Through numerical simulation, the effects of bottom contacting location, the heights of the gap and the shear key base were analyzed to investigate strength reduction and methods to enhance shear capacity of gap joint specimens. Numerical results proved that shear capacity of gap dry joints under full contact condition was higher than that under partial contact. In addition, left contact destroyed the integrity of shear keys, resulting in significant strength reduction. Larger shear key base remarkably increased shear capacity of the gap joint. Experimental tests indicated that AASHTO provision underestimated shear capacity of the match-casting dry joint specimens, while the numerical results for the gap dry joint showed that AASHTO provision underestimated shear capacity of full contact specimens, but overestimated that of left contact specimens.