• 제목/요약/키워드: MDOF

검색결과 117건 처리시간 0.025초

철골 연성 모멘트 골조에 대한 다자유도 시스템의 연성계수 평가 (Evaluation of Ductility Factors for MDOF Systems in Special Steel Moment Resisting Frames)

  • 강철규;한영철
    • 한국지진공학회논문집
    • /
    • 제8권6호통권40호
    • /
    • pp.13-22
    • /
    • 2004
  • 연성 계수는 반응수정계수(R)의 핵심구성요소로서 내진설계에서 중요한 역할을 하는 계수이다. 본 연구에서의 연성계수()는 단자유도 구조물의 연성계수()에 다자유도 보정계수()를 곱하여 평가하였다. 단자유도 시스템의 연성계수는 지진하중을 받는 단자유도 구조물의 변위 연성요구도와 주기에 따른 비선형 동적해석으로부터 산정하였다. 다자유도 시스템의 영향을 고려하기 위한 다자유도 보정계수()는 기존의 연구에 근거하여 제시하였다. 철골 연성 모멘트 골조의 연성계수를 평가하기 위하여, 구조물의 층수, 골조시스템(외곽골조, 분배골조), 붕괴 메카니즘(강-기둥 약-보, 약-기둥 강-보), 토질조건 및 지진구역을 변수로 하여 총 108개의 예제 구조물을 설계하였다. 구조물의 층수, 붕괴 메카니즘 및 토질조건은 연성계수에 큰 영향을 미치는 반면, 골조 시스템 및 지진구역은 연성계수에 영향을 미치지 않는 것으로 나타났다.

교량구조물의 지진응답에 대한 등가단자유도 방법의 영향 (Effect of Equivalent SDOF Methods for Seismic Evaluation of Bridge Structures)

  • 남왕현;송종걸;정영화
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.316-323
    • /
    • 2005
  • The capacity spectrum method (CSM) can be used for the evaluation of inelastic maximum response of structures and has been recently used in the seismic design using the incorporation of pushover analysis and response spectrum method. To efficiently evaluate seismic performance of multi-degree-of freedom (MDOF) bridge structures, it is important that the equivalent response of MDOF bridge structures be calculated. In this study to calculate the equivalent response of MDOF system, equivalent responses are obtained by the using Song method, N2 method and Calvi method. Also, these are applied the CSM method and seismic performance of bridge according to the ESDOF method are compared and evaluated.

  • PDF

Overstrength factors for SDOF and MDOF systems with soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • 제10권6호
    • /
    • pp.1273-1289
    • /
    • 2016
  • This paper addresses the concept of lateral overstrength; the ratio of actual lateral strength to design base shear force, for both SDOF and MDOF systems considering soil structure interaction. Overstrength factors are obtained with inelastic time history analysis for SDOF systems for period range of 0.1-3.0 s, five different aspect ratios (h/r=1, 2, 3, 4, 5) and five levels of ductility (${\mu}$=2, 3, 4, 5, 6) considering soil structure interaction. Structural overstrength for MDOF systems are obtained with inelastic time history collapse analysis for sample 1, 3, 6, 9, 12 and 15 storey RC frame systems. In analyses, 64 ground motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used. Also lateral overstrength ratios considering soil structure interaction are compared with those calculated for fixed-base cases.

FETM을 이용한 다자유도 회전체 시스템의 진동해석

  • 김승현;김영배
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.818-821
    • /
    • 1995
  • A MDOF vibration analysis of the rotor is performed using combined modeling of transfer matrix method and finite element method(FETM). The method combines the advantages of both matrix. Each rotor is modelled using transfer matrix method and treated one element or several ones. The finite element method is applied in composing a system matrix and finding roots. The method used in this is more efficient than conventional finite element method in saving calculation time and provides good results in complex MDOF rotor model.

  • PDF

기초체계의 운동학적 상호작용을 고려한 고층건물의 응답스펙트럼에 미치는 고차모드의 영향 (Effects of Higher Modes on the Response Spectra of High-rise Buildings considering the Kinematic Interaction of a Foundation System)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제19권3호
    • /
    • pp.85-92
    • /
    • 2015
  • Response spectra of a building are made with a SDOF system taking into account a first mode shape, even though higher modes may affect on the dynamic responses of a high-rise building. A soft soil layer under a building also affects on the responses of a building. In this study, seismic responses of a MDOF system were investigated to examine the effects of higher modes on the response of a tall building by comparing them with those of a SDOF system including the kinematic interaction effect. Study was performed using a pseudo 3D finite element program with seven bedrock earthquake records downloaded from the PEER database. Effects of higher modes on the seismic responses of a tall building were investigated for base shear force and base moment of a MDOF system including story shear forces and story moments. Study results show that higher modes of a MDOF system contribute to a reduction of base shear force up to 1/4-1/5 of KBC and base moment. The effect of higher modes is more significant on the base shear force than on the base moment. Maximum story shear force and moment occurred at the top part of a building rather than at a base in the cases of tall buildings differently from short buildings, and higher modes of a tall building affected on the base forces making them almost constant at the base. A soft soil layer also affects some on the base shear force of a high-rise building independently on the soft soil type, but a soft soil effect is prominent on the base moment.

Ductility and ductility reduction factor for MDOF systems

  • Reyes-Salazar, Alfredo
    • Structural Engineering and Mechanics
    • /
    • 제13권4호
    • /
    • pp.369-385
    • /
    • 2002
  • Ductility capacity is comprehensively studied for steel moment-resisting frames. Local, story and global ductility are being considered. An appropriate measure of global ductility is suggested. A time domain nonlinear seismic response algorithm is used to evaluate several definitions of ductility. It is observed that for one-story structures, resembling a single degree of freedom (SDOF) system, all definitions of global ductility seem to give reasonable values. However, for complex structures it may give unreasonable values. It indicates that using SDOF systems to estimate the ductility capacity may be a very crude approximation. For multi degree of freedom (MDOF) systems some definitions may not be appropriate, even though they are used in the profession. Results also indicate that the structural global ductility of 4, commonly used for moment-resisting steel frames, cannot be justified based on this study. The ductility of MDOF structural systems and the corresponding equivalent SDOF systems is studied. The global ductility values are very different for the two representations. The ductility reduction factor $F_{\mu}$ is also estimated. For a given frame, the values of the $F_{\mu}$ parameter significantly vary from one earthquake to another, even though the maximum deformation in terms of the interstory displacement is roughly the same for all earthquakes. This is because the $F_{\mu}$ values depend on the amount of dissipated energy, which in turn depends on the plastic mechanism, formed in the frames as well as on the loading, unloading and reloading process at plastic hinges. Based on the results of this study, the Newmark and Hall procedure to relate the ductility reduction factor and the ductility parameter cannot be justified. The reason for this is that SDOF systems were used to model real frames in these studies. Higher mode effects were neglected and energy dissipation was not explicitly considered. In addition, it is not possible to observe the formation of a collapse mechanism in the equivalent SDOF systems. Therefore, the ductility parameter and the force reduction factor should be estimated by using the MDOF representation.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

내진성능평가를 위한 다자유도 교량의 수정 비선형 등가정적해석법 (Modified Nonlinear Static Pushover Procedures of MDOF Bridgesfor Seismic Performance Evaluation)

  • 조창근;김영상;배수호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.175-184
    • /
    • 2006
  • 다자유도의 교량에 횡방향 지진하중을 받는 경우, 교량의 내진성능설계 및 성능평가를 위한 두 가지 비선형 등가 정적해석절차를 제시하였다. 빌딩구조물에 대한 FEMA-273의 변위계수법과 ATC에서 채택하고 있는 역량스펙트럼법을 개선하여 다자유도 연속교량의 내진성능평가에 적용토록 제시하였다. 수정된 두 방법들에 대한 적합성을 시간이력 동적해석과 비교토록 하였다. 다자유도 교량의 교축직각방향 관성력 분포를 합리적으로 반영하기 위하여, 수평방향 지진하중의 분포형태에 따른 모드 및 스펙트럴 하중분포를 적용토록 하였다. 철근 콘크리트 교각 부재는 하중-기초법에 의한 비선형 층상화 골조 유한요소 모델을 사용하여 교량 구조물을 모델링 하였다.

Generation of synthetic accelerograms using a probabilistic critical excitation method based on energy constraint

  • Bazrafshan, Arsalan;Khaji, Naser
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.45-56
    • /
    • 2020
  • The application of critical excitation method with displacement-based objective function for multi degree of freedom (MDOF) systems is investigated. To this end, a new critical excitation method is developed to find the critical input motion of a MDOF system as a synthetic accelerogram. The upper bound of earthquake input energy per unit mass is considered as a new constraint for the problem, and its advantages are discussed. Considering this constraint, the critical excitation method is then used to generate synthetic accelerograms for MDOF models corresponding to three shear buildings of 10, 16, and 22 stories. In order to demonstrate the reliability of generated accelerograms to estimate dynamic response of the structures, three target ground motions with considerable level of energy contents are selected to represent "real critical excitation" of each model, and the method is used to re-generate these ground motions. Afterwards, linear dynamic analyses are conducted using these accelerograms along with the generated critical excitations, to investigate the key parameters of response including maximum displacement, maximum interstory drift, and maximum absolute acceleration of stories. The results show that the generated critical excitations can make an acceptable estimate of the structural behavior compared to the target ground motions. Therefore, the method can be reliably implemented to generate critical excitation of the structure when real one is not available.

Evaluation of N2 method for damage estimation of MDOF systems

  • Yaghmaei-Sabegh, Saman;Zafarvand, Sadaf;Makaremi, Sahar
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.155-165
    • /
    • 2018
  • Methods based on nonlinear static analysis as simple tools could be used for the seismic analysis and assessment of structures. In the present study, capability of the N2 method as a well-known nonlinear analysis procedure examines for the estimation of the damage index of multi-storey reinforced concrete frames. In the implemented framework, equivalent single-degree-of-freedom (SDOF) models are utilized for the global damage estimation of multi-degree-of-freedom (MDOF) systems. This method does not require high computational analysis and subsequently decreases the required time of seismic design and assessment process. To develop the methodology, RC frames with period range from 0.4 to 2.0 s under 40 records are studied. The effectiveness of proposed technique is evaluated through numerical study under near- and far-field earthquake ground motions. Finally, the results of developed models are compared with two other simplified schemes along with nonlinear time history analysis results of multi-storey frames. To improve the accuracy of damage estimation, a modified relation is presented based on the N2 method results for near- and far-field earthquakes.