• Title/Summary/Keyword: MDO (Multi-Disciplinary Optimization)

Search Result 10, Processing Time 0.02 seconds

An Efficient Solution Method to MDO Problems in Sequential and Parallel Computing Environments (순차 및 병렬처리 환경에서 효율적인 다분야통합최적설계 문제해결 방법)

  • Lee, Se-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.236-245
    • /
    • 2011
  • Many researchers have recently studied multi-level formulation strategies to solve the MDO problems and they basically distributed the coupling compatibilities across all disciplines, while single-level formulations concentrate all the controls at the system-level. In addition, approximation techniques became remedies for computationally expensive analyses and simulations. This paper studies comparisons of the MDO methods with respect to computing performance considering both conventional sequential and modem distributed/parallel processing environments. The comparisons show Individual Disciplinary Feasible (IDF) formulation is the most efficient for sequential processing and IDF with approximation (IDFa) is the most efficient for parallel processing. Results incorporating to popular design examples show this finding. The author suggests design engineers should firstly choose IDF formulation to solve MDO problems because of its simplicity of implementation and not-bad performance. A single drawback of IDF is requiring more memory for local design variables and coupling variables. Adding cheap memories can save engineers valuable time and effort for complicated multi-level formulations and let them free out of no solution headache of Multi-Disciplinary Analysis (MDA) of the Multi-Disciplinary Feasible (MDF) formulation.

Multi-disciplinary Optimization of Composite Sandwich Structure for an Aircraft Wing Skin Using Proper Orthogonal Decomposition (적합직교분해법을 이용한 항공기 날개 스킨 복합재 샌드위치 구조의 다분야 최적화)

  • Park, Chanwoo;Kim, Young Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.535-540
    • /
    • 2019
  • The coupling between different models for MDO (Multi-disciplinary Optimization) greatly increases the complexity of the computational framework, while at the same time increasing CPU time and memory usage. To overcome these difficulties, POD (Proper Orthogonal Decomposition) and RBF (Radial Basis Function) are used to solve the optimization problem of determining the thickness of composites and sandwich cores when composite sandwich structures are used as aircraft wing skin materials. POD and RBF are used to construct surrogate models for the wing shape and the load data. Optimization is performed using the objective function and constraint function values which are obtained from the surrogate models.

Multi-Disciplinary Design Optimization of a Wing using Parametric Modeling (파라미터 모델링을 이용한 항공기 날개의 다분야 설계최적화)

  • Kim, Young-Sang;Lee, Na-Ri;Joh, Chang-Yeol;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.229-237
    • /
    • 2008
  • In this research, a MDO(multi-disciplinary design optimization) framework, which integrates aerodynamic and structural analysis to design an aircraft wing, is constructed. Whole optimization process is automated by a parametric-modeling approach. A CFD mesh is generated automatically from parametric modeling of CATIA and Gridgen followed by automatic flow analysis using Fluent. Finite element mesh is generated automatically by parametric method of MSC.Patran PCL. Aerodynamic load is transferred to Finite element model by the volume spline method. RSM(Response Surface Method) is applied for optimization, which helps to achieve global optimum. As the design problem to test the current MDO framework, a wing weight minimization with constraints of lift-drag ratio and deflection of the wing is selected. Aspect ratio, taper ratio and sweepback angle are defined as design variables. The optimization result demonstrates the successful construction of the MDO framework.

Mathematical Validation of Multidisciplinary Design Optimization Based on Independent Subspaces (독립적 하부 시스템에 의한 다분야 통합 최적설계)

  • Shin, Moon-Kyun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.109-117
    • /
    • 2004
  • Optimization has been successfully applied to systems with a single discipline. As many disciplines are involved in coupled fashion, MDO (multidisciplinary design optimization) technology has been developed. MDO algorithms are trying to solve the coupled aspects generated from interdisciplinary relationship. In a general MDO algorithms, a large design problem is decomposed into small ones which can be easily solved. Although various methods have been proposed for MDO, the research is still in the early stage. This research proposes a new MDO method which is named as MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Many real engineering problems consist of physically separate components and they can be independently designed. The inter-relationship occurs through coupled physics. MDOIS is developed for such problems. In MDOIS, a large system is decomposed into small subsystems. The coupled aspects are solved via system analysis which solves the coupled physics. The algorithm is mathematically validated by showing that the solution satisfies the Karush-Kuhn-Tucker condition.

Multidisciplinary Design Optimization of Vehicle Front Suspension System Using PIDO Technology (PIDO 기술을 이용한 차량 전륜 현가계의 다분야통합최적설계)

  • Lee, Gab-Seong;Park, Jung-Min;Choi, Byung-Lyul;Choi, Dong-Hoon;Nam, Chan-Hyuk;Kim, Gi-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • Multidisciplinary design optimization (MDO) for a suspension component of the vehicle front suspension was performed in this research. Shapes and thicknesses of the subframe were optimized to satisfy multi-disciplinary design requirements; weight, fatigue, crash, noise, vibration, and harshness (NVH), and kinematic and compliance (K&C). Analyses procedures of the performance disciplines were integrated and automated by using the process integration and design optimization (PIDO) technique, and the integrated and automated analyses environments enabled various types of analytic design methodologies for solving the MDO problem. We applied an approximate optimization technique which involves sequential sampling and metamodeling. Since the design variables for thicknesses should be dealt as discrete variables. the evolutionary algorithm is selected as optimization technique. The MDO problem was formulated three types of problems according to the order of priorities among the performance disciplines, and the results of MDO provided design alternatives for various design situations.

Turbomachinery design by a swarm-based optimization method coupled with a CFD solver

  • Ampellio, Enrico;Bertini, Francesco;Ferrero, Andrea;Larocca, Francesco;Vassio, Luca
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.149-170
    • /
    • 2016
  • Multi-Disciplinary Optimization (MDO) is widely used to handle the advanced design in several engineering applications. Such applications are commonly simulation-based, in order to capture the physics of the phenomena under study. This framework demands fast optimization algorithms as well as trustworthy numerical analyses, and a synergic integration between the two is required to obtain an efficient design process. In order to meet these needs, an adaptive Computational Fluid Dynamics (CFD) solver and a fast optimization algorithm have been developed and combined by the authors. The CFD solver is based on a high-order discontinuous Galerkin discretization while the optimization algorithm is a high-performance version of the Artificial Bee Colony method. In this work, they are used to address a typical aero-mechanical problem encountered in turbomachinery design. Interesting achievements in the considered test case are illustrated, highlighting the potential applicability of the proposed approach to other engineering problems.

Web Service-Based Integrated Design Framework (웹 서비스 기반의 통합 설계 프레임워크)

  • Jang Won-Seok;Kim Kwang-Sik;Jeong Karp-Joo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.187-189
    • /
    • 2006
  • 오늘날 공학 분야에서 한 분야에서만 이뤄지던 연구가 다분야 통합 연구로 바뀌어 가고 있다. MDO(Multi-Disciplinary Optimization) 프레임워크는 각 분야의 설계 도구들 간의 데이터 공유로 효율적 관리를 위한 기술과 여러 분야가 분산된 환경 하에서 병렬로 작업할 수 있는 컴퓨팅 환경을 말한다. 기존의 MDO 프레임워크는 여러 분야의 설계 도구들을 통합 관리하는 표준 인터페이스가 없고 이것들의 작업 흐름을 자동으로 통합 관리할 환경이 없다는 문제점이 있다. 본 논문에서는 웹 서비스를 사용하여 각 설계도구 간의 표준 인터페이스를 제공하고, 워크플로우를 사용하여 이것들을 자동으로 통합 관리하는 웹 서비스 기반 통합 설계 프레임워크를 구현한다.

  • PDF

Multidisciplinary UAV Design Optimization Implementing Multi-Fidelity Analysis Techniques (다정밀도 해석기법을 이용한 무인항공기 다분야통합 최적설계)

  • Lee, Jae-Woo;Choi, Seok-Min;Van, Nguyen Nhu;Kim, Ji-Min;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.695-702
    • /
    • 2012
  • In this study, Multi-fidelity analysis is performed to improve the accuracy of analysis result during conceptual design stage. Multidisciplinary Design Optimization(MDO) method is also considered to satisfy the total system requirements. Low-fidelity analysis codes which are based on empirical equations are developed and validated for analyzing the Unmanned Aerial Vehicle(UAV) which have unconventional configurations. Analysis codes consist of initial sizing, aerodynamics, propulsion, mission, weight, performance, and stability modules. Design synthesis program which is composed of those modules is developed. To improve the accuracy of the design method for UAV, Vortex Lattice Method is used for the strategy of MFA. Multi-Disciplinary Feasible(MDF) method is used for MDO technique. To demonstrate the validity of presented method, the optimization results of both methods are compared. According to those results, the presented method is demonstrated to be applicable to improve the accuracy of the analyses during conceptual design stage.

Aero-Structure MDO Design of Supersonic Fighter Wing Using Response Surface Methodology (반응면 기법을 이용한 초음속 전투기 날개의 공력-구조 다학제간 설계)

  • Kim, Yu-Shin;Kim, Ji-Han;Jeon, Yong-Hee;Bang, Je-Sung;Lee, Dong-Ho;Kim, Yong-Hyup;Park, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.588-594
    • /
    • 2001
  • 본 연구를 통해 초음속 전투기 날개의 공력-구조를 동시에 고려한 다학제간 설계를 수행하였다. 공력해석을 위해 사용된 3 차원 Euler Code는 수렴 속도를 개선하기 위해 Multigrid를 적용하였으며, 3차의 transfinite interpolation을 사용하여 O-H type의 공력해석 격자계를 생성하였다. 구조 분야는 절점당 54개의 자유도를 가지는 9 절점 쉘 혼합 유한요소(9-node shell mixed finite element)를 사용하여 해석을 수행하였다. 설계변수는 공력쪽으로 날개의 평면형상에 관련된 변수 3개, 구조쪽은 날개 윗면과 아래면의 표피두께에 관련된 4개의 설계변수 사용하였으며, D-optimality 조건을 만족시키는 실험점들에 대해 공력해석과 구조해석이 연동된 정적 공탄성 해석을 수행한 후, 반응면 기법을 이용하여 목적함수와 제약조건에 대한 반응면을 구성하였다. 단일점 설계를 수행한 후 이를 바탕으로 3개의 설계점을 동시에 고려한 다점 설계를 수행하였으며, 공력만을 고려한 설계 결과와 공력-구조를 동시에 고려한 다학제간 설계결과의 비교를 통해 다학제간 설계의 타당성과 우수성을 입증하였다.

  • PDF

A Comparison Study on the Semi-empirical Analysis Approach for the Flight Characteristics of a Light Airplane (경비행기의 비행특성 분석 및 준경험적 분석 방법 비교)

  • Lee, Jung-hoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • In this study, for development of the MDO (Multi Disciplinary Optimization) framework, the flight dynamic characteristic parameters of the ChangGong-91, a light aircraft, were extracted by an analytical method based on various semi-empirical methods, and the flight test method was compared and evaluated. The semi-empirical analysis methods for comparative subjects were the Perkins method, McCormick method, and Smetana method. The major stability/control derivatives and dynamic factors were calculated, using each method. As the comparison criteria, the flight test derivative estimates and dynamic factors were processed, using the output error method. Additionally, the flight characteristics of the light aircraft were analyzed and evaluated according to the provisions of the Korean Airworthiness Standard (KAS) of the Ministry of Land, Infrastructure and Transport, and MIL-F-8785C for the U.S. military.