• Title/Summary/Keyword: MDA-MB-231cells line

Search Result 44, Processing Time 0.033 seconds

Silencing of Disabled-2 Gene by CpG Methylation in Human Breast Cancer Cell Line, MDA MB-231 Cells (사람의 유방암 세포주인 MDA MB-231 세포에서 CpG 메칠화에 의한 Disabled-2유전자의 발현억제)

  • Ko Myung Hyun;Oh Yu Mi;Park Jun Ho;Jeon Byung Hoon;Han Dong Min;Kim Won Sin
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.802-808
    • /
    • 2005
  • Human Disabled-2 (Dab2) is a candidate tumor suppressor gone that regulates cell growth by c-Fos suppression in normal cells. In many cancer cells, Dab2 expression is lost or greatly diminished in $\∼85\%$ of the breast and ovarian cancers. In this study, we have examined the methylation status of CpG island on Dab2 gene promoter using bisulfite-assisted genomic sequencing and methylation specific PCR (MSP) method in human breast cancer cell line, MDA MB-231 cells. In normal human uterus endometrial cells, Dab2 was completely unmethylated. In contrast, Dab2 was methylated on CpG dinucleotides near the TATA_ box in MDA MB-231 cells. following MDA MB-231 cells by treatment with 5-azacytidine, Dab2 gene were demethylated and reexpressed. Result of this study suggested that silencing of Dab2 gene is correlated to CpG island methylation in human breast cancer cell line, MBA MD-231 cells.

Effect of corosolic acid on apoptosis and angiogenesis in MDA-MB-231 human breast cancer cells (Corosolic acid의 유방암세포 증식 및 전이에 미치는 영향)

  • Son, Kun Ho;Hwang, Jin-hyeon;Kim, Dong-ha;Cho, Young-Eun
    • Journal of Nutrition and Health
    • /
    • v.53 no.2
    • /
    • pp.111-120
    • /
    • 2020
  • Purpose: Corosolic acid (CA), also known as 2α-hydroxyursolic acid, is present in numerous plants, and is reported to exhibit anti-cancer and anti-proliferative activities in various cancer cells such as osteosarcoma, hepatocellular carcinoma, lung adenocarcinoma, and colon cancer. However, the anti-cancer activity of CA on human breast cancer cells and the underlying mechanisms remain to be elucidated. The present study aimed to investigate the anticancer effects of CA in the human breast cancer cell line, MDA-MB-231. Methods: Cell viability, reactive oxygen species (ROS) production, apoptosis marker protein expression, migration, invasion rate, and vascular endothelial growth factor (VEGF) levels were assessed by treating MDA-MB-231 cells to increasing concentrations of CA. Results: The results showed that CA significantly inhibited the cell proliferation of MDA-MB-231 cells in a dose-dependent manner. To assess the effect of CA on apoptosis, nuclei of MDA-MB-231 cells were stained with DAPI solution. Chromatin condensation, which indicates apoptosis, was observed to increase dose-dependently. In addition, western-blot analysis revealed elevated levels of the apoptosis marker proteins (Bax and cleaved caspase 3) subsequent to MDA-MB-231 exposure to CA. ROS production was also increased in the CA-induced apoptosis in MDA-MB-231 treated cells. Interestingly, CA exposure resulted in significantly decreased migration and invasion rates in the MDA-MB-231 cells. Data further revealed that exposure to CA markedly decreased the VEGF concentration, thereby contributing to a reduction in angiogenesis. Conclusion: Our results determined that exposure to CA induces anti-proliferation, apoptosis, and ROS production, and suppresses cell migration and invasion rate in MDA-MB-231 cells. Taken together, these results indicate the potential of CA to be applied as an effective chemotherapeutic agent for treating breast cancer.

Delphinidin inhibits cell proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines (Delphinidin이 인체 유방암세포 MDA-MB-231의세포증식 억제와 세포사멸 유도에 미치는 영향)

  • Seo, Eun Young
    • Journal of Nutrition and Health
    • /
    • v.46 no.6
    • /
    • pp.503-510
    • /
    • 2013
  • Breast cancer is the most common malignancy in women, both in the developed and developing countries. Anthocyanins are natural coloring of a multitude of foods, such as berries, grapes or cherries. Glycosides of the aglycons delphinidin represent the most abundant anthocyanins in fruits. Delphinidin has recently been reported to inhibit the growth of human tumor cell line. Also, delphinidin is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathion peroxidase activity. This study investigates the effects of delphinidin on protein ErbB2, ErbB3 and Akt expressions associated with cell proliferation and Bcl-2, Bax protein associated with cell apoptosis in MDA-MB-231 human breast cancer cell line. MDA-MB-231 cells were cultured with various concentrations (0, 5, 10, and $20{\mu}mol/L$) of delphinidin. Delphinidin inhibited breast cancer cell growth in a dose dependent manner (p < 0.05). ErbB2 and ErbB3 expressions were markdly lower $5{\mu}mol/L$ delphinidin (p < 0.05). In addition, total Akt and phosphorylated Akt levels were decreased dose-dependently in cells treated with delphinidin (p < 0.05). Futher, Bcl-2 levels were dose-dependently decreased and Bax expression was significantly increased in cells treated with delphinidin (p < 0.05). In conclusion, I have shown that delphinidin inhibits cell growth, proliferation and induces apoptosis in MDA-MB-231 human breast cancer cell lines.

Anti-cancer effect of glabridin by reduction of extracellular vesicles secretion in MDA-MB-231 human breast cancer cells (유방암세포에서 세포외 소포체 분비 감소를 통한 glabridin의 항암효과)

  • Choi, Sang-Hun;Hwang, Jin-Hyeon;Baek, Moon-Chang;Cho, Young-Eun
    • Journal of Nutrition and Health
    • /
    • v.55 no.2
    • /
    • pp.240-249
    • /
    • 2022
  • Purpose: Glabridin (GD) is a bio-available isoflavane isolated from the root extract of licorice (Glycyrrhiza glabra L.). It exhibits a variety of pharmacological activities such as anti-inflammatory and anti-oxidant activities. However, extracellular vesicles (EVs) secretion and the anti-cancer mechanism of action remains largely unknown. The present study investigates the anticancer effects of GD by determining the inhibition of EVs secretion in the human breast cancer cell line, MDA-MB-231. Methods: Cell viability, reactive oxygen species (ROS) production, migration, invasion rate, and vascular endothelial growth factor (VEGF) concentration were assessed in MDA-MB-231 cells treated with increasing concentrations of GD (0.1, 1, 5, 10, 20 µM). Subsequently, EV secretion and exosomal DEL-1 protein expression were evaluated to determine the anticancer effects of GD. Results: The results showed that GD significantly inhibited the cell proliferation of MDA-MB-231 cells in a dose- or time-dependent manner. Also, ROS production and apoptosis marker protein cleaved caspase-3 were significantly increased in GD-treated MDA-MB-231, compared to control. Furthermore, GD exposure resulted in significantly decreased not only migration and invasion rates but also the VEGF concentration, thereby contributing to a reduction in angiogenesis. Interestingly, the concentration and number of EVs as well as EV marker proteins, such as CD63 and TSG101, were decreased in GD-treated MDA-MB-231 cells. Markedly, extracellular matrix protein DEL-1 as angiogenesis factor was decreased in EVs from GD-treated MDA-MB-231 cells. Conclusion: This study identifies that the anti-cancer molecular mechanism of GD is exerted via inhibition of angiogenesis and EVs secretion, indicating the potential of GD as a chemotherapeutic agent for breast cancer.

G0/G1 Switch 2 Induces Cell Survival and Metastasis through Integrin-Mediated Signal Transduction in Human Invasive Breast Cancer Cells

  • Cho, Eunah;Kwon, Yeo-Jung;Ye, Dong-Jin;Baek, Hyoung-Seok;Kwon, Tae-Uk;Choi, Hyung-Kyoon;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.27 no.6
    • /
    • pp.591-602
    • /
    • 2019
  • Human breast cancer cell line, MDA-MB-231, is highly invasive and aggressive, compared to less invasive cell line, MCF-7. To explore the genes that might influence the malignancy of MDA-MB-231, DNA microarray analysis was performed. The results showed that G0/G1 switch 2 (G0S2) was one of the most highly expressed genes among the genes upregulated in MDA-MB-231. Although G0S2 acts as a direct inhibitor of adipose triglyceride lipase, action of G0S2 in cancer progression is not yet understood. To investigate whether G0S2 affects invasiveness of MDA-MB-231 cells, G0S2 expression was inhibited using siRNA, which led to decreased cell proliferation, migration, and invasion of MDA-MB-231 cells. Consequently, G0S2 inhibition inactivated integrin-regulated FAK-Src signaling, which promoted Hippo signaling and inactivated ERK1/2 signaling. In addition, G0S2 downregulation decreased ${\beta}$-catenin expression, while E-cadherin expression was increased. It was demonstrated for the first time that G0S2 mediates the Hippo pathway and induces epithelial to mesenchymal transition (EMT). Taken together, our results suggest that G0S2 is a major factor contributing to cell survival and metastasis of MDA-MB-231 cells.

Effect of [6]-Gingerol on Bcl-2 and Bax Expression in MDA-MB-231 Human Breast Cancer Cell Line ([6]-Gingerol이 인체 유방암세포 MDA-MB-231에서 Bcl-2와 Bax 발현에 미치는 영향)

  • Seo, Eun-Young;Kim, Woo-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.6
    • /
    • pp.671-676
    • /
    • 2006
  • We investigated the effect of gingerol (Zingiber officinale Roscoe, Zingiberaceae) on Bcl-2 and Bax expression in MDA-MB-231 human breast cell lines. The oleoresin from rhizomes of ginger contains [6]-gingerol (1-[4'-hydroxy-3'-methoxyphenyl]-5-hydroxy-3-decanone). We previously reported that [6]-gingerol inhibits cell proliferation in MDA-MB-231 human breast cancer cell lines. In this study, we examined protein and mRNA expression associated with cell apoptosis in MDA-MB-231 human breast cancer cell lines. We cultured MDA-MB-231 cells in presence of various concentrations 0, 2.5, 5 and $10\;{\mu}M$ of [6]-gingerol. Bcl-2 protein and its mRNA levels were decreased dose-dependently in cells treated with [6]-gingerol, but Bax protein and its mRNA levels were unchanged by [6]-gingerol treatment. Bcl-2/Bax ratio was decreased in a dose dependent manner treated with [6]-gingerol. Caspase-3 activity was significantly increased dose-dependently in cell treated with [6]-gingerol (p<0.05). In conclusion, we have shown that [6]-gingerol induces apoptosis in MDA-MB-231 human breast cancer cell lines.

Imidazole Antifungal Drugs Inhibit the Cell Proliferation and Invasion of Human Breast Cancer Cells

  • Bae, Sung Hun;Park, Ju Ho;Choi, Hyeon Gyeom;Kim, Hyesook;Kim, So Hee
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.494-502
    • /
    • 2018
  • Breast cancer is currently the most prevalent cancer in women, and its incidence increases every year. Azole antifungal drugs were recently found to have antitumor efficacy in several cancer types. They contain an imidazole (clotrimazole and ketoconazole) or a triazole (fluconazole and itraconazole) ring. Using human breast adenocarcinoma cells (MCF-7 and MDA-MB-231), we evaluated the effects of azole drugs on cell proliferation, apoptosis, cell cycle, migration, and invasion, and investigated the underlying mechanisms. Clotrimazole and ketoconazole inhibited the proliferation of both cell lines while fluconazole and itraconazole did not. In addition, clotrimazole and ketoconazole inhibited the motility of MDA-MB-231 cells and induced $G_1$-phase arrest in MCF-7 and MDA-MB-231 cells, as determined by cell cycle analysis and immunoblot data. Moreover, Transwell invasion and gelatin zymography assays revealed that clotrimazole and ketoconazole suppressed invasiveness through the inhibition of matrix metalloproteinase 9 in MDA-MB-231 cells, although no significant changes in invasiveness were observed in MCF-7 cells. There were no significant changes in any of the observed parameters with fluconazole or itraconazole treatment in either breast cancer cell line. Taken together, imidazole antifungal drugs showed strong antitumor activity in breast cancer cells through induction of apoptosis and $G_1$ arrest in both MCF-7 and MDA-MB-231 cells and suppression of invasiveness via matrix metalloproteinase 9 inhibition in MDA-MB-231 cells. Imidazole drugs have well-established pharmacokinetic profiles and known toxicity, which can make these generic drugs strong candidates for repositioning as antitumor therapies.

Thymoquinone (TQ) regulates cyclooxygenase-2 expression and prostaglandin E2 production through PI3kinase (PI3K)/p38 kinase pathway in human breast cancer cell line, MDA-MB-231

  • Yu, Seon-Mi;Kim, Song-Ja
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.274-279
    • /
    • 2012
  • Thymoquinone (TQ), a drug extracted from the black seeds of Nigella sativa, has been shown to exhibit anti-inflammatory, anti-oxidant, and anti-neoplastic effects in numerous cancer cells. The effects of TQ on cyclooxygenase-2 (COX-2) expression and prostaglandin $E_2$ ($PGE_2$) production in MDA-MB-231, however, remain poorly understood. Western blot analysis and immunofluorescence staining were performed to study the expression levels of inflammation regulatory proteins in MDA-MB-231. $PGE_2$ assay was conducted to explore the TQ-induced production of $PGE_2$. In this study, we investigated the effects of TQ on COX-2 expression and $PGE_2$ production in MDA-MB-231. TQ significantly induced COX-2 expression and increased $PGE_2$ production in a dose-dependent manner, as determined by a Western blot analysis and $PGE_2$ assay. Furthermore, the activation of Akt and p38 kinase, respectively, was up-regulated in TQ treated cells. Inhibition of p38 kinase with SB203580 and PI3kinase (PI3K) with LY294002 abolished TQ-caused COX-2 expression and decreased $PGE_2$ production. These results collectively demonstrate that TQ effectively modulates COX-2 expression and $PGE_2$ production via PI3K and p38 kinase pathways in the human breast cancer cell line MDA-MB-231.

Anti-cancer Effect of Apigenin on Human Breast Carcinoma MDA-MB-231 through Cell Cycle Arrest and Apoptosis

  • Lee, Hwan Hee;Cho, Hyosun
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • Apigenin, a common natural product that is found in many plants and vegetables, has been reported to have many biological activities, including antioxidative, anti-inflammatory, and anticancer effects. The triple-negative breast carcinoma cell line MDA-MB-231 is known to be highly invasive and resistant to chemotherapy. In this study, we investigated the anticancer effect of apigenin on human MDA-MB-231 cells. First, the cytotoxicity of apigenin toward MDA-MB-231 cells was analyzed by MTT assay. Then, the cell cycle and apoptotic effects of apigenin were examined, and the molecular mechanism underlying its anticancer activity was explored. Apigenin inhibited the growth of the cells in a dose-dependent manner, correlating with the cell cycle arrest at the G2-M phase as well as an increase of early apoptosis. The cell-cycle inhibitory effect was highly associated with the increased expression of p21 and decreased expression of CDK6, cyclin D1, and cyclin B1. The induction of apoptosis by apigenin was associated with the upregulated expression of cleaved PARP and cleaved caspase-3, -7, and -9.

miR-153 Silencing Induces Apoptosis in the MDA-MB-231 Breast Cancer Cell Line

  • Anaya-Ruiz, Maricruz;Cebada, Jorge;Delgado-Lopez, Guadalupe;Sanchez-Vazquez, Maria Luisa;Perez-Santos, Jose Luis Martin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2983-2986
    • /
    • 2013
  • MicroRNAs (miRNAs) are small, non-coding RNAs (18-25 nucleotides) that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs. In this context, the present study aimed to evaluate the in vitro effects of miR-153 inhibition in the breast carcinoma cell line MDA-MB-231. Forty-eight hours after MDA-MB-231 cells were transfected with the miR-153 inhibitor, an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was utilized to determine the effects of miR-153 on cell viability. Flow cytometry analysis and assessment of caspase 3/7 activity were adopted to determine whether miR-153 affects the proliferation rates and apoptosis levels of MDA-MB-231 cells. Our results showed that silencing of miR-153 significantly inhibited growth when compared to controls at 48 hours, reducing proliferation by 37.6%, and inducing apoptosis. Further studies are necessary to corroborate our findings and examine the potential use of this microRNA in future diagnostic and therapeutic interventions.