• Title/Summary/Keyword: MDA-MB-231 cell

Search Result 235, Processing Time 0.031 seconds

The Effect of Angelica keiskei Ethnol Extract on Proliferation, Apotosis and ROS Accumulation in Human Breast Cancer MDA-MB-231 Cells (신선초 에탄올 추출물이 인체 유방암 MDA-MB-231 세포에서 세포증식, 세포사멸과 ROS 축적에 미치는 영향)

  • Jeong, Yu-Jin;Nam, Mi-Kyung;Kang, Keum-Jee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • The anti-cancer effects of Angelica keiskei ethanol extract were evaluated in human breast cancer MDA-MB-231 cells. The concentrations of extract were 1, 2, 3, 4 and 5 mg/mL. Dose-dependent reductions in the number of cells with altered cell shape and pyknotic nuclei were observed at 48 h after treatments. MTT assay also exhibited a similar dose-dependent reduction in mitochondrial reductase activity (p<0.05), in particular, with a rapid reduction in the activity of the 5 mg/mL group. Analysis of cell death with propidium iodide (PI) staining revealed only a slight increase in cell death in the 5 mg/mL group. Analysis of bromodeoxyuridine (BrdU) incorporations also showed a dose-dependent reduction in cell proliferation (p<0.05). Finally, increases in total radical oxygen species (ROS) accumulation in cells, as revealed by DCF-DA staining, were observed in the treated groups in a similar dose-dependent fashion (p<0.05). These results indicate that Angelica keiskei ethanol extract exhibiting anti-cancer effects in MDA-MB-231 cells causes multiple changes in cell shape, enzyme activity, and ROS accumulation, thereby inducing cell death.

Effect of Grape Skin Extract on Apoptosis in MDA-MB-231 Human Breast Cancer Cells (포도껍질 추출물이 인체유방암세포 사멸에 미치는 영향)

  • Park, Min-A;Kang, Keum-Jee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.25 no.1
    • /
    • pp.87-98
    • /
    • 2015
  • We investigated the apoptotic effects of grape skin extracts (GSE) and related gene expressions in human breast cancer MDA-MB-231 cells cultured in the presence of 0, 0.5, 1 and 1.5 mg/mL of GSE for 72 hours. MTT assay, trypan blue and nuclei staining showed lower cellular mitochondrial activities and increased cell deaths with a higher concentration of GSE (p<0.05). Increased cell number with fragmentated DNA of sub-G1 phase was calculated as a measure of apoptotic cell death by FACS analysis (p<0.05). In particular, apoptotic cell death caused markedly increased in the 1 and 1.5 mg/mL of GSE groups, as revealed by flow cytometry (Annexin V-FITC). RT-PCR analysis was performed on apoptotic and preapoptotic genes. Expression of the apoptosis suppressor gene bcl-2 significantly decreased, proapoptotic gene bax was significantly increased and procaspase-3 showing the presence of caspase-3 significantly decreased (p<0.05). Furthermore, bcl-2/bax ratio which is considered to be an important indicator of apoptosis, significantly decreased in a concentration-dependent manner (p<0.05). These results indicated that GSE induces apoptosis in MDA-MB-231 human breast cancer cells.

Bio-functionalization of the Single Layer Graphene for Detecting the Cancer Cell

  • Oh, Hyung Sik;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.429.1-429.1
    • /
    • 2014
  • We present a method of surface functionalization of a single layer graphene for linking and detecting MDA-MB-231 human breast cancer cell. The methodology is done by utilizing 1-pyrenebutanoic acid and succinimidyl ester for immobiling CD44 antibodies. This work shows that the single layer graphene is an efficient fixing substance to capture the MDA-MB-231 human breast cancer cell, selectively. The immobilization method of the cancer cell on the graphene layer will be an effective cell counting system. Moreover usage of the linking with non-covalent bonding is expected to develope a sensor scheme of electrical cell-detecting diagnosis system.

  • PDF

Inorganic sulfur reduces cell proliferation by inhibiting of $ErbB_2$ and $ErbB_3$ protein and mRNA expression in MDA-MB-231 human breast cancer cells

  • Ha, Ae Wha;Hong, Kyung Hee;Kim, Hee Sun;Kim, Woo Kyoung
    • Nutrition Research and Practice
    • /
    • v.7 no.2
    • /
    • pp.89-95
    • /
    • 2013
  • Dietary inorganic sulfur is the minor component in our diet, but some studies suggested that inorganic sulfur is maybe effective to treat cancer related illness. Therefore, this study aims to examine the effects of inorganic sulfur on cell proliferation and gene expression in MDA-MB-231 human breast cancer cells. MDA-MB-231 cells were cultured the absence or presence of various concentrations (12.5, 25, or 50 ${\mu}mol/L$) of inorganic sulfur. Inorganic sulfur significantly decreased proliferation after 72 h of incubation (P < 0.05). The protein expression of $ErbB_2$ and its active form, $pErbB_2$, were significantly reduced at inorganic sulfur concentrations of 50 ${\mu}mol/L$ and greater than 25 ${\mu}mol/L$, respectively (P < 0.05). The mRNA expression of $ErbB_2$ was significantly reduced at an inorganic sulfur concentration of 50 ${\mu}mol/L$ (P < 0.05). The protein expression of $ErbB_3$ and its active form, $pErbB_3$, and the mRNA expression of $pErbB_3$ were significantly reduced at inorganic sulfur concentrations greater than 25 ${\mu}mol/L$ (P < 0.05). The protein and mRNA expression of Akt were significantly reduced at an inorganic sulfur concentration of 50 ${\mu}mol/L$ (P < 0.05), but pAkt was not affected by inorganic sulfur treatment. The protein and mRNA expression of Bax were significantly increased with the addition of inorganic sulfur concentration of 50 ${\mu}mol/L$ (P < 0.05). In conclusion, cell proliferation was suppressed by inorganic sulfur treatment through the ErbB-Akt pathway in MDA-MB-231 cells.

Cell Cycle Modulation of MCF-7 and MDA-MB-231 by a Sub-Fraction of Strobilanthes crispus and its Combination with Tamoxifen

  • Yaacob, Nik Soriani;Kamal, Nik Nursyazni Nik Mohamed;Wong, Kah Keng;Norazmi, Mohd Nor
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8135-8140
    • /
    • 2016
  • Background: Cell cycle regulatory proteins are suitable targets for cancer therapeutic development since genetic alterations in many cancers also affect the functions of these molecules. Strobilanthes crispus (S. crispus) is traditionally known for its potential benefits in treating various ailments. We recently reported that an active sub-fraction of S. crispus leaves (SCS) caused caspase-dependent apoptosis of human breast cancer MCF-7 and MDA-MB-231 cells. Materials and Methods: Considering the ability of SCS to also promote the activity of the antiestrogen, tamoxifen, we further examined the effect of SCS in modulating cell cycle progression and related proteins in MCF-7 and MDA-MB-231 cells alone and in combination with tamoxifen. Expression of cell cycle-related transcripts was analysed based on a previous microarray dataset. Results: SCS significantly caused G1 arrest of both types of cells, similar to tamoxifen and this was associated with modulation of cyclin D1, p21 and p53. In combination with tamoxifen, the anticancer effects involved downregulation of $ER{\alpha}$ protein in MCF-7 cells but appeared independent of an ER-mediated mechanism in MDA-MB-231 cells. Microarray data analysis confirmed the clinical relevance of the proteins studied. Conclusions: The current data suggest that SCS growth inhibitory effects are similar to that of the antiestrogen, tamoxifen, further supporting the previously demonstrated cytotoxic and apoptotic actions of both agents.

A Novel All-trans Retinoid Acid Derivative Induces Apoptosis in MDA-MB-231 Breast Cancer Cells

  • Wang, Bei;Yan, Yun-Wen;Zhou, Qing;Gui, Shu-Yu;Chen, Fei-Hu;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10819-10824
    • /
    • 2015
  • Aims: To explore the effect and probable mechanism of a synthetic retinoid 4-amino-2-tri-fluoromethylphenyl ester (ATPR) on apoptosis of MDA-MB-231 breast cancer cells. Materials and Methods: MTT assays were performed to measure the proliferation of MDA-MB-231 cells treated with different concentrations of all-trans retinoic acid (ATRA) and ATPR. Morphologic changes were observed by microscopy. The apoptosis rates and cell cycling of MDA-MB-231 cells treated with ATRA or ATPR were assessed using flow cytometry analysis. Expression of retinoic acid receptor and phosphorylation of ERK, JNK, p38 proteins were detected by Western blotting. Results: Treatment of the cells with the addition of $15{\mu}mol/L$ ATPR for 48 h clearly demonstrated reduced cell numbers and deformed cells, whereas no changes in the number and morphology were observed after treatment with ATRA. The apoptosis rate was 33.2% after breast cancer MDA-MB-231 cells were treated by ATPR ($15{\mu}mol/L$) whereas ATRA ($15{\mu}mol/L$) had no apoptotic effect. ATPR inhibited the phosphorylation of ERK, JNK, and p38 while ATRA had no significant effect. ATPR inhibited the expression of BiP and increased the expression of Chop at the protein level compared with control groups, ATRA and ATPR both decreased the protein expression of $RXR{\alpha}$, ATPR reduced the protein expression of $RAR{\beta}$ and $RXR{\beta}$ while ATRA did not decrease $RAR{\beta}$ or $RXR{\beta}$. Conclusions: ATPR could induce apoptosis of breast cancer MDA-MB-231 cells, possible mechanisms being binding to $RAR{\beta}/RXR{\beta}$ heterodimers, then activation of ER stress involving the MAPK pathway.

Peptide H Reduces IL-6 Expression in Human Breast Cancer MDA-MB-231 Cells (인간 유방암 MDA-MB-231 세포에서 Peptide H에 의한 IL-6 발현 억제효과)

  • Sung, Dae Il;Park, Jameon;Kim, Han Bok
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.261-263
    • /
    • 2014
  • Chronic inflammation is involved in cancers, rheumatoid arthritis, and Crohn's disease. Inerleukin-6 (IL-6) plays major roles in inflammation. Chungkookjang, fermented soybean contains diverse peptides produced by cleavage of soybean proteins. The peptides can be bioactive compounds. Peptide (Gly-Val-Tyr-Tyr-Met-Tyr was purified from Chungkookjang, and modified to be 6mer H, Glu-Val-Tyr-Tyr-Met-Tyr (EVYYMY). Peptide H's activity to suppress IL-6 expression in a human breast cancer cell, MDA-MB-231 was determined. IL-6 Expression was reduced in the cell treated with peptide H 25 times less than controls which were not treated with peptide H. Proliferation of MDA-MB-231 cells was inhibited by peptide H, which is concentration-dependent. Blocking of IL-6 signals is known to be effective in reducing inflammation in rheumatoid arthritis, Crohn's disease, and cancers. Since peptide H can reduce inflammatory IL-6 expression, application of this study will contribute to drug development for diseases which are caused by excessive IL-6.

Thymoquinone (TQ) regulates cyclooxygenase-2 expression and prostaglandin E2 production through PI3kinase (PI3K)/p38 kinase pathway in human breast cancer cell line, MDA-MB-231

  • Yu, Seon-Mi;Kim, Song-Ja
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.274-279
    • /
    • 2012
  • Thymoquinone (TQ), a drug extracted from the black seeds of Nigella sativa, has been shown to exhibit anti-inflammatory, anti-oxidant, and anti-neoplastic effects in numerous cancer cells. The effects of TQ on cyclooxygenase-2 (COX-2) expression and prostaglandin $E_2$ ($PGE_2$) production in MDA-MB-231, however, remain poorly understood. Western blot analysis and immunofluorescence staining were performed to study the expression levels of inflammation regulatory proteins in MDA-MB-231. $PGE_2$ assay was conducted to explore the TQ-induced production of $PGE_2$. In this study, we investigated the effects of TQ on COX-2 expression and $PGE_2$ production in MDA-MB-231. TQ significantly induced COX-2 expression and increased $PGE_2$ production in a dose-dependent manner, as determined by a Western blot analysis and $PGE_2$ assay. Furthermore, the activation of Akt and p38 kinase, respectively, was up-regulated in TQ treated cells. Inhibition of p38 kinase with SB203580 and PI3kinase (PI3K) with LY294002 abolished TQ-caused COX-2 expression and decreased $PGE_2$ production. These results collectively demonstrate that TQ effectively modulates COX-2 expression and $PGE_2$ production via PI3K and p38 kinase pathways in the human breast cancer cell line MDA-MB-231.

Antiproliferative Properties of Methanolic Extract of Nigella sativa against the MDA-MB-231 Cancer Cell Line

  • Dilshad, Ahmad;Abulkhair, Omalkhair;Nemenqani, Dalal;Tamimi, Waleed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5839-5842
    • /
    • 2012
  • Breast cancer is the most commonly diagnosed cancer in women in the world and is one of the leading causes of death due to cancer. Health benefits have been linked to additive and synergistic combinations of phytochemicals in fruits and vegetables. Nigella sativa has been shown to possess anti-carcinogenic activity, inhibiting growth of several cancer cell lines in vitro. However, the molecular mechanisms of the anti-cancer properties of Nigella sativa phytochemical extracts have not been completely understood. Our data showed that Nigella sativa extracts significantly inhibited human breast cancer MDA-MB-231 cell proliferation at doses of $2.5-5{\mu}g/mL$ (P<0.05). Apoptotic induction in MDA-MB-231 cells was observed in a dose-dependent manner after exposure to Nigella sativa extracts for 48 h. Real time PCR and flow cytometry analyses suggested that Nigella sativa extracts possess the ability to suppress the proliferation of human breast cancer cells through induction of apoptosis.

miR-153 Silencing Induces Apoptosis in the MDA-MB-231 Breast Cancer Cell Line

  • Anaya-Ruiz, Maricruz;Cebada, Jorge;Delgado-Lopez, Guadalupe;Sanchez-Vazquez, Maria Luisa;Perez-Santos, Jose Luis Martin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2983-2986
    • /
    • 2013
  • MicroRNAs (miRNAs) are small, non-coding RNAs (18-25 nucleotides) that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs. In this context, the present study aimed to evaluate the in vitro effects of miR-153 inhibition in the breast carcinoma cell line MDA-MB-231. Forty-eight hours after MDA-MB-231 cells were transfected with the miR-153 inhibitor, an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was utilized to determine the effects of miR-153 on cell viability. Flow cytometry analysis and assessment of caspase 3/7 activity were adopted to determine whether miR-153 affects the proliferation rates and apoptosis levels of MDA-MB-231 cells. Our results showed that silencing of miR-153 significantly inhibited growth when compared to controls at 48 hours, reducing proliferation by 37.6%, and inducing apoptosis. Further studies are necessary to corroborate our findings and examine the potential use of this microRNA in future diagnostic and therapeutic interventions.