• Title/Summary/Keyword: MDA MB-231 cells

Search Result 245, Processing Time 0.028 seconds

C2-phytoceramide and Dimethylphytosphingosine induces cell death and apoptosis in human breast cancer cells, MDA-MB-231

  • Kim, Yun-Wha;Jeon, Soo-Jin;Kim, Ki-Sung;Han, Young-Soo;Song, Jie-Young;Park, Chang-Seo;Jung, In-Sung;Hong, Sung-Hee;Yun, Yeon-Sook
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.228.1-228.1
    • /
    • 2003
  • Sphingolipid metabolites have been implicated as an important component of cell signalling, such as cell proliferation, differentiation and apoptosis. But the roles of phytoceramide and its deraivatives are very poorly understood. even though they are abundant in plants, yeasts and animals including humans. We investigated the effects of N-acetyl-C2-phytosphingosine(NAPS) and the analogue of N.N-dimethylsphingosine(DMS), N,N-dimethylphytosphytosphingosine(DMPS), on cell growth inhibition and apoptosis. (omitted)

  • PDF

Cytotoxic Effects of Methanol Extracts from Medicinal Plants on Cancer Cell Lines

  • Lee, Jeong-Ho;Chun, Hyun-Ja;Lee, Ki-Nam;Lim, Jin-A;Ryu, Hyeong-Won;Baek, Seung-Hwa
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.210.3-210.3
    • /
    • 2003
  • This study was performed to determine the cytotoxic effect of methanol extract from medicinal plants. The cell viability was determined by the MTT method. Their cytotoxic activities against three cancer cell lines such as A549, MDA-MB-231 and SNU-C4 cell line were tested. Among them, The methanol extract of Saururus Chinensis Bail showed the strongest cytotoxic effect against SNU-C4 cells. These results suggest that the methanol extract of Saururus Chinensis Bail possessed a potential antitumorous agent

  • PDF

Cellular Imaging of Gold Nanoparticles Using a Compact Soft X-Ray Microscope (연 X-선 현미경을 이용한 금 나노입자 세포영상)

  • Kwon, Young-Man;Kim, Han-Kyong;Kim, Kyong-Woo;Kim, Sun-Hee;Yin, Hong-Hua;Chon, Kwon-Su;Kang, Sung-Hoon;Park, Seong-Hoon;Juhng, Seon-Kwan;Yoon, Kwon-Ha
    • Applied Microscopy
    • /
    • v.38 no.3
    • /
    • pp.235-243
    • /
    • 2008
  • A compact soft x-ray microscope operated in the 'water window' wavelength region ($2.3{\sim}4.4nm$) was used for observing cells with nano-scale spatial resolution. To obtain cellular imaging captured with colloidal gold nanoparticles using a compact soft x-ray microscope. The colloidal gold nanoparticles showed higher contrast and lower transmission more than 7 times than that of cellular protein on the soft x-ray wavelength region. The structure and thickness of the cell membrane of the Coscinodiscus oculoides (diatome) and red blood cells were seen clearly. The gold nanoparticles within the HT1080 and MDA-MB 231 cells were seen clearly on the soft x-ray microscopy. The gold nanoparticles were aggregated within vesicles by endocytosis.

Effect of Soy Isoflavones on the Expression of $TGF-{\beta}1$ and Its Receptors in Cultured Human Breast Cancer Cell Lines

  • Kim Young-Hwa;Jin Kyong-Suk;Lee Yong-Woo
    • Biomedical Science Letters
    • /
    • v.11 no.2
    • /
    • pp.175-183
    • /
    • 2005
  • The two major isoflavones in soy, genistein and daidzein, are well known to prevent hormone-dependent cancers by their anti estrogenic activity. The exact molecular mechanisms for the protective action are, however, not provided yet. It has been reported that genistein and daidzein have a potential anticancer activity through their antiproliferative effect in many hormone-dependent cancer cell lines. Transforming growth $factor-\beta1(TGF-\beta1)$ has also been found to have cell growth inhibitory effect, especially in mammary epithelial cells. This knowledge led to a hypothetical mechanism that the soy isoflavones-induced growth inhibitory effect can be derived from the regulation of $TGF-\beta1$ and $TGF-\beta$ receptors. In order to test this hypothesis, the effects of the soy isoflavones at various concentrations and periods on the expression of $TGF-\beta1$and $TGF-\beta$ receptors were investigated by using Northern blot analysis in human breast carcinoma epithelial cell lines, an estrogen receptor positive cell line (MCF-7) and an estrogen receptor negative cell line (MDA-MB-231). As a result, only genistein has shown a profound dose-dependent effect on $TGF-\beta1$ expression in the $ER^+$ cell line within the range of doses tested, and the expression levels are correspondent to their inhibitory activities of cell growth. Moreover, daidzein showed down-regulated $TGF-\beta1$ expression at a low dose, the cell growth proliferation was promoted at the same condition. Therefore, antiproliferative activity of the soy isoflavones can be mediated by $TGF-\beta1$ expression, and the effects are mainly, if not all, occurred by ER dependent pathway. The expression of $TGF-\beta$ receptors was induced at a lower dose than the one for $TGF-{\beta}1$ induction regardless of the presence of ER, and the expression patterns are similar to those of the cell growth inhibition. These results indicated that the regulation of $TGF-\beta$ receptor expression as well, prior to $TGF-\beta1$ expression, may be involved in the antiproliferative activity of soy isoflavones. Little or no expression of $TGF-\beta$ receptors was found in the MCF-7 and MDA-MB-231 cells, suggesting refractory properties of the cells to growth inhibitory effect of the $TGF-\beta$. The soy isoflavones can seemingly restore the sensitivity of growth inhibitory responses to $TGF-\beta1$ by re-inducing $TGF-\beta$ receptors expression. In conclusions, our findings presented in this study show that the antitumorigenic activity of the soy isoflavones could be mediated by not only $TGF-\beta1$induction but $TGF-\beta$ receptor restoration. Thus, soy isoflavones could be good model molecules to develop new nonsteroidal antiestrogenic chemopreventive agents, associated with, regulation of $TGF-\beta$ and its receptors.

  • PDF

4-(Tert-butyl)-2,6-bis(1-phenylethyl)phenol induces pro-apoptotic activity

  • Kim, Jun Ho;Lee, Yunmi;Kim, Mi-Yeon;Cho, Jae Youl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.253-259
    • /
    • 2016
  • Previously, we found that KTH-13 isolated from the butanol fraction of Cordyceps bassiana (Cb-BF) displayed anti-cancer activity. To improve its antiproliferative activity and production yield, we employed a total synthetic approach and derivatized KTH-13 to obtain chemical analogs. In this study, one KTH-13 derivative, 4-(tert-butyl)-2,6-bis(1-phenylethyl)phenol (KTH-13-t-Bu), was selected to test its anti-cancer activity. KTH-13-t-Bu diminished the proliferation of C6 glioma, MDA-MB-231, LoVo, and HCT-15 cells. KTH-13-t-Bu induced morphological changes in C6 glioma cells in a dose-dependent manner. KTH-13-t-Bu also increased the level of early apoptotic cells stained with annexin V-FITC. Furthermore, KTH-13-t-Bu increased the levels of cleaved caspase-3 and -9. In contrast, KTH-13-t-Bu upregulated the levels of pro- and cleaved forms of caspase-3, -8, and -9 and Bcl- 2. Phospho-STAT3, phospho-Src, and phospho-AKT levels were also diminished by KTH13-t-Bu treatment. Therefore, these results strongly suggest that KTH-13-t-Bu can be considered a novel anti-cancer drug displaying pro-apoptotic activity.

Silencing of COX-2 by RNAi Modulates Epithelial-Mesenchymal Transition in Breast Cancer Cells Partially Dependent on the PGE2 Cascade

  • Cao, Juan;Yang, Xiao;Li, Wen-Tong;Zhao, Chun-Ling;Lv, Shi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.22
    • /
    • pp.9967-9972
    • /
    • 2014
  • In order to prove whether downregulation of COX-2 (Cyclooxygenase-2) could modulate the epithelial-mesenchymal transition (EMT) of breast cancer, celecoxib and siRNA were respectively used to inhibit COX-2 function and expression in MDA-MB-231 cells. The EMT reversal effect in the RNAi treated group was better than that of the celecoxib group while there were no obvious differences in the medium $PGE_2$ levels between the two groups. The results show that COX-2 pathways may contribute considerably to EMT of breast cancer cells, partially dependent on the PGE2 cascade. Akt2, ZEB2 and Snail were measured to clarify the underlying mechanisms of COX-2 on EMT; COX-2 may modulate EMT of breast cancer by regulating these factors. This finding may be helpful to elucidate the mechanisms of selective COX-2 inhibitor action in EMT modulation in breast cancer.

MiRNA-15a Mediates Cell Cycle Arrest and Potentiates Apoptosis in Breast Cancer Cells by Targeting Synuclein-γ

  • Li, Ping;Xie, Xiao-Bing;Chen, Qian;Pang, Guo-Lian;Luo, Wan;Tu, Jian-Cheng;Zheng, Fang;Liu, Song-Mei;Han, Lu;Zhang, Jian-Kun;Luo, Xian-Yong;Zhou, Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6949-6954
    • /
    • 2014
  • Background: Recent studies have indicated that microRNA-15a (miR-15a) is dysregulated in breast cancer (BC). We aimed to evaluate the expression of miR-15a in BC tissues and corresponding para-carcinoma tissues. We also focused on effects of miR-15a on cellular behavior of MDA-MB-231 and expression of its target gene synuclein-${\gamma}$ (SNCG). Materials and Methods: The expression levels of miR-15a were analysed in BC formalin fixed paraffin embedded (FFPE) tissues by microarray and quantitative real-time PCR. CCK-8 assays, cell cycle and apoptosis assays were used to explore the potential functions of miR-15a in MDA-MB-231 human BC cells. A luciferase reporter assay confirmed direct targets. Results: Downregulation of miR-15a was detected in most primary BCs. Ectopic expression of miR-15a promoted proliferation and suppressed apoptosis in vivo. Further studies indicated that miR-15a may directly interact with the 3'-untranslated region (3'-UTR) of SNCG mRNA, downregulating its mRNA and protein expression levels. SNCG expression was negatively correlated with miR-15a expression. Conclusions: MiR-15a has a critical role in mediating cell cycle arrest and promoting cell apoptosis of BC, probably by directly targeting SNCG. Thus, it may be involved in development and progression of BC.

Anti-invasive Activity of Human Breast Carcinoma Cells by Genistein through Modulation of Tight Junction Function (인체유방암세포의 tight junction 기능 조절을 통한 genistein의 암세포 침윤 억제 효과)

  • Kim, Sung-Ok;Jeang, Yang-Kee;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1200-1208
    • /
    • 2009
  • Tight junctions (TJs) that act as paracellular permeability barriers play an essential role in regulating the diffusion of fluid, electrolytes and macromolecules through the paracellular pathway. In this study, we investigated the correlation between the tightening of TJs, permeability and the invasive activity of genistein - a bioactive isoflavone of soybeans - in human breast carcinoma MCF-7 and MDA-MB-231 cells. The inhibitory effects of genistein on cell proliferation, motility and invasiveness were found to be associated with the increased tightness of the TJs, which was demonstrated by an increase in transepithelial electrical resistance and a decrease in paracellular permeability. Additionally, the immunoblotting results indicated that genistein repressed the levels of the proteins that comprise the major components of TJ, claudin-3 and claudin-4, which play a key role in the control and selectivity of paracellular transport. Furthermore, genistein decreased the metastasis-related gene expressions of insulin like growth factor-1 receptor and snail, while concurrently increasing that of thrombospondin-1 and E-cadherin. In addition, we demonstrated that claudins play an important role in the anti-motility and invasiveness of genistein using claudin-3 small interfering RNA. Taken together, our results indicate a possible role for genistein as an inhibitor of cancer cell invasion through the tightening of TJs, which may counteract the up-regulation of claudins. In addition, our results indicate that this may be beneficial for the inhibition of tumor metastasis.

Biological Activities of Water and Ethanol Extracts from Two Varieties of Rubus coreanus Miquel Fruits

  • Yin, Yu;Wang, Myeong-Hyeon
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.1
    • /
    • pp.89-94
    • /
    • 2011
  • The potential biological activities of water and ethanol extracts from two varieties of Rubus coreanus Miquel fruits produced in the Gochang-gun (GR) and Hoengseong-gun (HR) regions of Korea were examined. The hydroxyl radical ($\cdot$OH) scavenging activity, reducing power, lipid peroxidation inhibitory activity, and antiproliferative activity on cancer cells by these extracts were examined, and $\alpha$-amylase and $\alpha$-glucosidase inhibition assays were also performed. The EtOH extract from GR showed high hydroxyl radical scavenging activity ($EC_{50}=119.47{\pm}5.13\;{\mu}g/mL$), lipid peroxidation inhibitory activity ($EC_{50}=213.45{\pm}3.14\;{\mu}g/mL$) and a concentration dependence, with OD values ranging from 0.15 to 0.56 (50 to 200 ${\mu}g/mL$), for reducing power. The EtOH extract from GR has the highest antiproliferative activities on MDA-MB-231 and HepG2 cancer cells among four extracts. Meanwhile, all extracts showed certain $\alpha$-amylase and $\alpha$-glucosidase inhibition activities. These results indicate that extracts from two varieties of R. coreanus fruits have significant antioxidant, anti-diabetic and anti-tumorigenic activities, which suggest these extracts could be a potential source for pharmaceutical.

Cancer Cell Growth Inhibition of Lanostane-type Triterpenoids Isolated from Ganoderma gibbosum (칠황버섯으로부터 분리한 Lanostane-type Triterpenoid의 암세포성장 억제효과)

  • Kim, Donghwa;Lee, Sang Kook;Park, Hee-Juhn
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.1
    • /
    • pp.36-40
    • /
    • 2020
  • The CHCl3 fraction of the MeOH extract of Ganoderma gibbosum (Ganodermataceae) exhibited cytotoxic activity on five cancer cell lines (MDA-MB-231, SK-hep1, A549, HCT116, and SNU638). Six highly oxygenated lanostane-type triterpenoids (lanostanoids) were isolated by column chromatography to test cytotoxicity on cancer cells. The five known lanostanoids were identified as gibbosic acids A, B, D, G, and H by comparison of molecular ion peaks with the literature data. The structure of a new lanostanoid, gibbosic acids I, was identified to be 3β,8β,15β,20S-tetrahydroxy-7,12,23-trioxolanost-9(11)-en-26-oic acid on the basis of NMR and MS spectroscopy. The three lanostanoids of gibbosic acids A, H, and I of the six isolates significantly suppressed the growth of cancer cells. In particular, the IC50 of gibbosic acid H was prominently low ranging from 2.64-6.56 μM.