• Title/Summary/Keyword: MCNP4A

Search Result 134, Processing Time 0.024 seconds

Investigating Dynamic Parameters in HWZPR Based on the Experimental and Calculated Results

  • Nasrazadani, Zahra;Behfarnia, Manochehr;Khorsandi, Jamshid;Mirvakili, Mohammad
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1120-1125
    • /
    • 2016
  • The neutron decay constant, ${\alpha}$, and effective delayed neutron fraction, ${\beta}_{eff}$, are important parameters for the control of the dynamic behavior of nuclear reactors. For the heavy water zero power reactor (HWZPR), this document describes the measurements of the neutron decay constant by noise analysis methods, including variance to mean (VTM) ratio and endogenous pulse source (EPS) methods. The measured ${\alpha}$ is successively used to determine the experimental value of the effective delayed neutron fraction as well. According to the experimental results, ${\beta}_{eff}$ of the HWZPR reactor under study is equal to 7.84e-3. This value is finally used to validate the calculation of the effective delayed neutron fraction by the Monte Carlo methods that are discussed in the document. Using the Monte Carlo N-Particle (MCNP)-4C code, a ${\beta}_{eff}$ value of 7.58e-3 was obtained for the reactor under study. Thus, the relative difference between the ${\beta}_{eff}$ values determined experimentally and by Monte Carlo methods was estimated to be < 4%.

DESIGN OF A NEUTRON SCREEN FOR 6-INCH NEUTRON TRANSMUTATION DOPING IN HANARO

  • Kim, Hak-Sung;Oh, Soo-Youl;Jun, Byung-Jin;Kim, Myong-Seop;Seo, Chul-Gyo;Kim, Heon-Il
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.675-680
    • /
    • 2006
  • The neutron transmutation doping of silicon (NTD), as a method to produce a high quality semiconductor, utilizes the transmutation of a silicon element into phosphorus by neutron absorption in a silicon single crystal. In this paper, we present the design of a neutron screen for a 6' Si ingot irradiation in the NTD2 hole of HANARO. The goal of the design is to achieve an even flat axial distribution of the resistivity, or $Si^{30}(n,{\gamma})Si^{31}$ reaction rate, in the irradiated Si ingot. We used the MCNP4C code to simulate the neutron screen and to calculate the reaction rate distribution in the Si ingot. The fluctuations in the axial distribution were estimated to be within ${\pm}2.0%$ from the average for the final neutron screen design; thus, they satisfy the customers' requirement for uniform irradiation. On the other hand, we determined the optimal insertion depths of the Si ingots by varying the critical control rod position, which greatly affects the axial flux distribution.

Computational design and characterization of a subcritical reactor assembly with TRIGA fuel

  • Asuncion-Astronomo, Alvie;Stancar, Ziga;Goricanec, Tanja;Snoj, Luka
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.337-344
    • /
    • 2019
  • The TRIGA fuel of the Philippine Research Reactor-1 (PRR-1) will be used in a subcritical reactor assembly (SRA) to strengthen and advance nuclear science and engineering expertise in the Philippines. SRA offers a versatile and safe training and research facility since it can produce neutrons through nuclear fission reaction without achieving criticality. In this work, we used a geometrically detailed model of the PRR-1 TRIGA fuel to design a subcritical reactor assembly and calculate physical parameters of different fuel configurations. Based on extensive neutron transport simulations an SRA configuration is proposed, comprising 44 TRIGA fuel rods arranged in a $7{\times}7$ square lattice. This configuration is found to have a maximum $k_{eff}$ value of $0.95001{\pm}0.00009$ at 4 cm pitch. The SRA is characterized by calculating the 3-dimensional neutron flux distribution and neutron spectrum. The effective delayed neutron fraction and mean neutron generation time of the system are calculated to be $748pcm{\pm}7pcm$ and $41{\mu}s$, respectively. Results obtained from this work will be the basis of the core design for the subcritical reactor facility that will be established in the Philippines.

A NOVEL APPROACH TO FIND OPTIMIZED NEUTRON ENERGY GROUP STRUCTURE IN MOX THERMAL LATTICES USING SWARM INTELLIGENCE

  • Akbari, M.;Khoshahval, F.;Minuchehr, A.;Zolfaghari, A.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.951-960
    • /
    • 2013
  • Energy group structure has a significant effect on the results of multigroup transport calculations. It is known that $UO_2-PuO_2$ (MOX) is a recently developed fuel which consumes recycled plutonium. For such fuel which contains various resonant nuclides, the selection of energy group structure is more crucial comparing to the $UO_2$ fuels. In this paper, in order to improve the accuracy of the integral results in MOX thermal lattices calculated by WIMSD-5B code, a swarm intelligence method is employed to optimize the energy group structure of WIMS library. In this process, the NJOY code system is used to generate the 69 group cross sections of WIMS code for the specified energy structure. In addition, the multiplication factor and spectral indices are compared against the results of continuous energy MCNP-4C code for evaluating the energy group structure. Calculations performed in four different types of $H_2O$ moderated $UO_2-PuO_2$ (MOX) lattices show that the optimized energy structure obtains more accurate results in comparison with the WIMS original structure.

Effect of DUPIC Cycle on CANDU Reactor Safety Parameters

  • Mohamed, Nader M.A.;Badawi, Alya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1109-1119
    • /
    • 2016
  • Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by $UO_2$ enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

Copper neutron transport libraries validation by means of a 252Cf standard neutron source

  • Schulc, Martin;Kostal, Michal;Novak, Evzen;Simon, Jan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3151-3157
    • /
    • 2021
  • Copper is an important structural material in various nuclear energy applications, therefore the correct knowledge of copper cross sections is crucial. The presented paper deals with a validation of different copper transport libraries by means of activation of selected samples. An intense 252Cf(sf) source with a reference neutron spectrum was used as a neutron source. After irradiation, the samples were measured using a high purity germanium detector and the dosimeter reaction rates were inferred. These experimental data were compared with MCNP6 calculations using CENDL-3.1, JENDL-4.0, ENDF/B-VII.1, ENDF/B-VIII.0, JEFF-3.2 and JEFF-3.3 evaluated Cu transport libraries. The experiment specifically focuses on 58Ni(n,p)58Co, 93Nb(n,2n)92mNb, 197Au(n,g)198Au and 55Mn(n,g)56Mn dosimetry reactions. Evaluated activation cross sections of these dosimetric reactions were taken from the IRDFF-II library. The best library performance depends on the energy region of interest.

A Theoretical Calculation for Angular Dependence of X-ray Beams on Extremity Phantom (말단팬텀에서 X-선 빔의 방향의존성에 관한 이론적 계산)

  • Kim, Jong-Soo;Yoon, Suk-Chul;Kim, Jang-Lyul;Kim, Kwang-Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.263-271
    • /
    • 1996
  • The ANSI N13.32 recommends that a study of the angular response of a dosimeter be carried out once, although no pass/fail criterion is given for angular response. Gamma dose equivalent conversion and angular dependence factors were calculated by using MCNP code for the case of ANSI N13.32 extremity phantoms(finger and arm) at the depth of $7mg/cm^2$. Those extremity dosimeters were assumed to be irradiated from both monoenergitic photons and ISO X-ray narrow beams. These calculated gamma dose equivalent conversion and angular dependence factors were compared to B. Grosswendt's result calculated by using X-ray beams. The result showed that the dose equivalent conversion factors of this study agreed well with that of B. Grosswendt for all energies within 2% except 7% in the case of the low energies. In the case of angular dependence factors comparison, they agreed within 3%. It was shown that angular dependence factors of the finger phantom decreased as the horizontal angle of the phantom increased for the ISO X-ray beams less than 60keV. For the higher energy X-ray beams range they decreased slightly around 40 degree, but then increased from this energy to 90 degree.

  • PDF

Development of a Methodology for Estimating Radioactivity Concentration of NORM Scale in Scrap Pipes Based on MCNP Simulation

  • Wanook Ji;Yoomi Choi;Zu-Hee Woo;Young-Yong Ji
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.481-487
    • /
    • 2023
  • Concerning the apprehensions about naturally occurring radioactive materials (NORM) residues, the International Atomic Energy Agency (IAEA) and its member nations have acknowledged the imperative to ensure the radiation safety of NORM industries. Residues with elevated radioactivity concentrations are predominantly produced during NORM processing, in the form of scale and sludge, referred to as technically enhanced NORM (TENORM). Substantial quantities of TENORM residues have been released externally due to the dismantling of NORM processing factories. These residues become concentrated and fixed in scale inside scrap pipes. To assess the radioactivity of scales in pipes of various shapes, a Monte Carlo simulation was employed to determine dose rates corresponding to the action level in TENORM regulations for different pipe diameters and thicknesses. Onsite gamma spectrometry was conducted on a scrap iron pipe from the titanium dioxide manufacturing factory. The measured dose rate on the pipe enabled the estimation of NORM concentration in the pipe scale onsite. The derived action level in dose rate can be applied in the NORM regulation procedure for on-site judgments.

Isotopic Analysis of Decay Heat Contributors From Actinides and Fission Fragments of Spent Nuclear Fuel for Intermediate- and Long-Term Storage Times

  • Amir Mohammad Al-Ramady
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • In this research, a detailed analysis of the decay heat contributions of both actinides and non-actinides (fission fragments) from spent nuclear fuel (SNF) was made after 50 GWd·tHM-1 burnup of fresh uranium fuel with 4.5% enrichment lasted for 1,350 days. The calculations were made for a long storage period of 300 years divided into four sections 1, 10, 100, and 300 years so that we could study the decay heat and physical disposal ratios of radioactive waste in medium- and long-term storage periods. Fresh fuel burnup calculations were made using the code MCNP, while isotopic content and then decay heat were calculated using the built-in stiff equation solver in the MATLAB code. It is noted that only around 12 isotopes contribute more than 90% of the decay heat at all times. It is also noted that the contribution of actinides persists and is the dominant ether despite decreasing decay heat, while the effect of fission products decreases at a very rapid rate after about 40 years of storage.

Study on Electrical Properties of X-ray Sensor Based on CsI:Na-Selenium Film

  • Park Ji-Koon;Kang Sang-Sik;Lee Dong-Gil;Choi Jang-Yong;Kim Jae-Hyung;Nam Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.3
    • /
    • pp.10-14
    • /
    • 2003
  • In this paper, we have introduced the x-ray detector built with a CsI:Na scintillation layer deposited on amorphous selenium. To determine the thickness of the CsI:Na layer, we have estimated the transmission spectra and the absorption of continuous x-rays in diagnostic range by using computer simulation (MCNP 4C). A x-ray detector with 65 ${\mu}m$-CsI:Na/30 ${\mu}m$-Se layer has been fabricated by a thermal evaporation technique. SEM and PL measurements have been performed. The dark current and x-ray sensitivity of the fabricated detector has been compared with that of the conventional a-Se detector with 100 ${\mu}m$ thickness. Experimental results show that both detectors exhibit a similar dark current, which was of a low value below $400 pA/cm^2$ at 10 V/${\mu}m$. However, the CsI:Na-Se detector indicates high x-ray sensitivity, roughly 1.3 times that of a conventional a-Se detector. Furthermore, a CsI:Na-Se detector with an aluminium reflective layer shows a 1.8 times higher x-ray sensitivity than an a-Se detector. The hybrid type detector proposed in this work exhibits a low dark current and high x-ray sensitivity, and, in particular, excellent linearity to the x-ray exposure dose.