Browse > Article
http://dx.doi.org/10.1016/j.net.2018.09.025

Computational design and characterization of a subcritical reactor assembly with TRIGA fuel  

Asuncion-Astronomo, Alvie (Philippine Nuclear Research Institute)
Stancar, Ziga (Jozef Stefan Institute)
Goricanec, Tanja (Jozef Stefan Institute)
Snoj, Luka (Jozef Stefan Institute)
Publication Information
Nuclear Engineering and Technology / v.51, no.2, 2019 , pp. 337-344 More about this Journal
Abstract
The TRIGA fuel of the Philippine Research Reactor-1 (PRR-1) will be used in a subcritical reactor assembly (SRA) to strengthen and advance nuclear science and engineering expertise in the Philippines. SRA offers a versatile and safe training and research facility since it can produce neutrons through nuclear fission reaction without achieving criticality. In this work, we used a geometrically detailed model of the PRR-1 TRIGA fuel to design a subcritical reactor assembly and calculate physical parameters of different fuel configurations. Based on extensive neutron transport simulations an SRA configuration is proposed, comprising 44 TRIGA fuel rods arranged in a $7{\times}7$ square lattice. This configuration is found to have a maximum $k_{eff}$ value of $0.95001{\pm}0.00009$ at 4 cm pitch. The SRA is characterized by calculating the 3-dimensional neutron flux distribution and neutron spectrum. The effective delayed neutron fraction and mean neutron generation time of the system are calculated to be $748pcm{\pm}7pcm$ and $41{\mu}s$, respectively. Results obtained from this work will be the basis of the core design for the subcritical reactor facility that will be established in the Philippines.
Keywords
Nuclear reactor; Subcritical assembly; TRIGA fuel; MCNP;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H.R. Vega-Carrillo, I.R. Esparza-Garcia, A. Sanchez, Features of a subcritical nuclear reactor, Ann. Nucl. Energy 75 (2015) 101-106.   DOI
2 N. Xoubi, Calculation of the power and absolute flux of a source driven subcritical assembly using Monte Carlo MCNP code, Ann. Nucl. Energy 97 (2016) 96-101.   DOI
3 G. Klujber, J.L. Kloosterman, D. De Haas, Neutron noise measurements at the delphi subcritical assembly, in: Proc. PHYSOR 2012 Adv. React. Phys. - Link. Res. Ind. Educ, 2012, pp. 1-18.
4 A. Talamo, et al., MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly, Nucl. Eng. Des. 241 (5) (2011) 1606-1615.   DOI
5 N. Xoubi, Neutronic design study of accelerator driven system (ADS) for Jordan subcritical reactor as a neutron source for nuclear research, Appl. Radiat. Isot. 131 (2018) 71-76.   DOI
6 C.D. Bowman, et al., Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, Nucl. Instrum. Methods Phys. Res. A 320 (1-2) (1992) 336-367.   DOI
7 Z. Chen, Y. Wu, B. Yuan, D. Pan, Nuclear waste transmutation performance assessment of an accelerator driven subcritical reactor for waste transmutation (ADS-NWT), Ann. Nucl. Energy 75 (2015) 723-727.   DOI
8 C. Rubbia, et al., Conceptual Design of a Fast Neutron Operated High Power Energy Amplifier, 1995. CERN/AT/95-44.
9 G. Perret, et al., Kinetic parameter measurements in the MINERVE reactor, IEEE Trans. Nucl. Sci. 64 (1) (2017) 724-734.   DOI
10 A. Herrera-Martinez, Y. Kadi, G. Parks, M. Dahlfors, Transmutation of nuclear waste in accelerator-driven systems: fast spectrum, Ann. Nucl. Energy 34 (7) (2007) 564-578.   DOI
11 W. Kim, H.C. Lee, C.H. Pyeon, H.C. Shin, D. Lee, Monte Carlo analysis of the accelerator-driven system at kyoto university research reactor Institute, Nucl. Eng. Technol. 48 (2) (2016) 304-317.   DOI
12 C. Rubbia, et al., Neutronic Analyses of the Trade Demonstration Facility, vol. 5639, 2004, pp. 103-123. October.
13 X-5 Monte Carlo Team, "MCNP - a General Monte Carlo N-particle Transport Code, Version 5." LA-CP-03-0245, LANL, 2003.
14 A. Dall'Osso, The influence of the neutron source spectrum on the infinite homogeneous reactor in subcritical condition, Ann. Nucl. Energy 77 (2015) 408-414.   DOI
15 S. Zhou, et al., LAVENDER: a steady-state core analysis code for design studies of accelerator driven subcritical reactors, Nucl. Eng. Des. 278 (2014) 434-444.   DOI
16 Z.I. Zafar, M.H. Kim, Embedded fission source approach to analyze external source effect in a subcritical reactor, Nucl. Eng. Des. 327 (2018) 238-247. April 2016.   DOI
17 N. Xoubi, Neutrons and gamma-ray dose calculations in subcritical reactor facility using MCNP, Atoms 4 (3) (2016) 20.   DOI
18 A. Gandini, On the multiplication factor and reactivity definitions for subcritical reactor systems, Ann. Nucl. Energy 29 (6) (Apr. 2002) 645-657.   DOI
19 K. Nishihara, T. Iwasaki, Y. Udagawa, A new static and dynamic one-point equation and analytic and numerical calculations for a subcritical system, J. Nucl. Sci. Technol. 40 (7) (2003) 481-492.   DOI
20 H. Shahbunder, C.H. Pyeon, T. Misawa, J.Y. Lim, S. Shiroya, Subcritical multiplication factor and source efficiency in accelerator-driven system, Ann. Nucl. Energy 37 (9) (2010) 1214-1222.   DOI
21 M. Turkmen, U. Colak, S. Ergun, Effect of burnup on the neutronic parameters of ITU TRIGA Mark II research reactor, Prog. Nucl. Energy 83 (2015) 26-34.   DOI
22 Z. Stancar, L. Barbot, C. Destouches, D. Fourmentel, J.F. Villard, L. Snoj, Computational validation of the fission rate distribution experimental benchmark at the JSI TRIGA Mark II research reactor using the Monte Carlo method, Ann. Nucl. Energy 112 (2018) 94-108.   DOI
23 R. Henry, I. Tiselj, L. Snoj, Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP, Appl. Radiat. Isot. 97 (2015) 140-148.   DOI
24 M.B. Chadwick, et al., ENDF/B-VII.0: next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107 (12) (2006) 2931-3060.   DOI
25 R.K. Meulekamp, S.C. Van Der Marck, Calculating the effective delayed neutron fraction with Monte Carlo, Nucl. Sci. Eng. 152 (August) (2006) 142-148.   DOI
26 B.C. Kiedrowski, et al., "MCNP5-1.60 Feature Enhancements & Manual Clarifications," No. LA-UR-10-06217, 2010.
27 International Atomic Energy Agency (IAEA) TRS 403, Compendium of Neutron Spectra and Detector Responses, 2001, p. 276, 403.
28 B. Verboomen, W. Haeck, P. Baeten, Monte Carlo calculation of the effective neutron generation time, Ann. Nucl. Energy 33 (10) (2006) 911-916.   DOI
29 N. Xu, et al., Elemental composition in sealed plutonium-beryllium neutron sources, Appl. Radiat. Isot. 95 (2015) 85-89.   DOI
30 L. Snoj, A. Kavcic, G. Zerovnik, M. Ravnik, Calculation of kinetic parameters for mixed TRIGA cores with Monte Carlo, Ann. Nucl. Energy 37 (2) (2010) 223-229.   DOI
31 M. Hassanzadeh, S.A.H. Feghhi, H. Khalafi, Calculation of the neutron importance and weighted neutron generation time using MCNIC method in accelerator driven subcritical reactors, Nucl. Eng. Des. 262 (2013) 404-408.   DOI
32 R.K. Meulekamp, S.C. Van Der Marck, Calculating the effective delayed neutron fraction with Monte Carlo, Nucl. Sci. Eng. 152 (2006) 142-148.   DOI