• Title/Summary/Keyword: MCM-41

Search Result 91, Processing Time 0.031 seconds

Synthesis and Spectroscopic Characterization of Vanadium incorporated V-AlMCM-41 Molecular Sieves

  • Back, Gern-Ho;Yu, Jong-Sung;Lee, Hye-Young;Lee, Yong-Ill
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.10 no.2
    • /
    • pp.141-154
    • /
    • 2006
  • A solid-state reaction of $V_2O_5$ with AlMCM-41 followed by calcinations generated $V^{5+}$ species in the mesoporous materials. Dehydration results in the formation of a vanadyl species, $VO^{2+}$, that can be characterized by electron spin resonance (ESR). The chemical environment of the vanadium centers in V-AlMCM-41 was investigated by XRD, EDX, diffuse reflectance UV-VIS, ESR, $^{29}Si,\;^{27}Al,\;and\;^{51}V$ NMR. It was found that the vanadium species on the wall surface and inside the wall of the hexagonal tubular wall of the V-AlMCM-41 were completely oxidized to tetrahedral $V^{5+}$ and transformed to square pyramidal by additional coordination to water molecules upon hydration. The oxidized $V^{5+}$ species on the wall surfaces and inside the wall were also reversibly reduced to $VO^{2+}$ species or lower valences by thermal process.

  • PDF

XRD Study for the Effect of Aging and Gel Composition on the Crystdlinity of MCM-41 (숙성과 겔 성분이 MCM-41의 결정성에 미치는 효과에 대한 XRD 연구)

  • Park, Dong-Ho;Park, Sung-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.1
    • /
    • pp.52-59
    • /
    • 2000
  • The reaction gel mixtures of molar composition (0.3${\sim}$2.1) $SiO_2:\;(0.10{\sim}0.50)\;CTABr:\;0.15{\sim}0.23)\;TMAOH:\;(20{\sim}100)\;H_2O$ we prepared and then aged at room temperature for a definite duration. The aged gel is reacted hydrothermally at $150^{\circ}C$ for 2 days. The pH of reaction gel during synthesis is strongly influenced by the concentration of TMAOH and silica source. The pH change affects the phase of product, which is monitored by X-ray diffractometer. With increasing the TMAOH ratio from 0.19 to 0.23, the gel becomes more basic, and the product involves more lamellar phase. At TMAOH ratio lower than 0.19, the hexagonal phase is lower with decrease of pH. The content of the lamellar phase increases at a lower $SiO_2$ concentration, and higher concentrations have a clear detrimental effect on the crystallinity ofMCM-41 due to an excess silica source. The best quality MCM-41 is synthesized from a reaction gel composition of $1.0\;SiO_2:\;0.27\;CTABr:\;0.19\;TMAOH:\;40\;H_2O$. The pH values of this gel, aged one for 24 hr, and reacted one at $150^{\circ}C$ for 2 days are 12.3, 11.5, and 10.5, respectively. Gel aging for 24 h is essential for preparing high quality MCM-41. Longer aging causes a decrease of hexagonal phase.

  • PDF

Reaction Kinetics of Carbon Dioxide and Glycidyl Methacrylate using a Ionic Liquid Catalyst of Imidazole Immobilized on MCM41 (MCM41에 담지된 Imidazole 촉매에 의한 Glycidyl Methacrylate와 이산화탄소의 반응속도론)

  • Son, Young-Sik;Park, Moon-Ki;Kim, Gun-Woo;Park, Sang-Wook
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.410-417
    • /
    • 2009
  • Carbon dioxide was absorbed into GMA solution in a stirred flat cell using mesoporous catalyst Imidazole-CP-MS41, which was synthesized by CP-MCM41 with imidazole. Experiments were carried out at a batch-type absorber with different conditions, varying reaction temperature, concentration of GMA, solvent but maintaining 50 rpm of agitation speed and 2 g of catalyst. Absorption rate of $CO_2$ was used to obtain the kinetics based on the film theory using zwitterion mechanism with 2 elementary reaction and the kinetics were correlated with the solubility parameter of the solvents.

Diels-Alder Cycloaddition of Cyclopentadiene with Ethylacrylate Catalyzed by Mesoporous Al-MCM-48 and Al-MCM-41 Catalysts

  • Shon, Jeong-Kuk;Sim, Jae-Yi;Thakur, Santosh Singh;Ko, Eun-Mi;Kong, Soo-Sung;Choi, Ji-Yun;Kang, Min;Senapati, Bidyut Kumar;Choi, Doo-Seoung;Ryu, Do-Hyun;Kim, Ji-Man
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1993-1997
    • /
    • 2008
  • In the present work, Diels-Alder reaction of cyclopentadiene with ethylacrylate has been carried out by using two types of mesoporous solid acid catalysts (Al-MCM-41, Al-MCM-48) with different pore structures. The specific topology of Al-MCM-48 (cubic Ia3d structure composed of two independent 3-D channel systems) exhibit higher activity and stereo-control than those of Al-MCM-41 (hexagonal packing of 1-D channels). The physical properties of Al-MCM-48 catalyst, such as high accessibility of reactants to the acid sites, spatial confinement in the nanoscopic reactors, and 3-D channel network structure that are effective adsorption and diffusion of reactants, play a crucial role in the present study.

High Concentrated Toluene Decomposition by Non-thermal Plasma-Photocatalytic (Mn-Ti-MCM-41) Hybrid System (상온 방전 플라즈마-광촉매(Mn-Ti-MCM-41) 복합 시스템에 놓인 고농도 톨루엔의 분해성능)

  • Ban, Ji-Young;Son, Yeon-Hee;Lee, Sung-Chul;Kang, Misook;Choung, Suk-Jin;Sung, Joon-Yong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.413-421
    • /
    • 2005
  • This study focused on the decomposition of toluene in a plasma-photocatalytic hybrid system. Hexagonally packed meso-structured Mn-titanosilicates (Mn-Ti-MCM-41), as the photocatalysts, have been prepared by the hydrothermal method. The physical properties of the photocatalysts were characterized using XRD, XPS, TEM, BET/ICP, and $NH_3$/Toluene-TPD. Experiments were carried out at the applied voltage of 9.0 kV and at room temperature of $20^{\circ}C$. In the plasma only system, the activity of the toluene decomposition was higher than that in the photocatalytic system. However, the amount of by-products, such as phenol, $C_2{\sim}C_4$ alkene, was also increased in the plasma only system. However, the by-products decreased remarkably in a plasma-photocatalytic hybrid system. When Mn5mol%-Ti-MCM-41 was used as a photocatalyst in a plasma-photocatalytic hybrid system, the $CO_2$ selectivity in products was increased dramatically compared to other catalysts. It was confirmed that a plasma-photocatalytic hybrid system was better for toluene decomposition compared to photocatalytic and plasma only systems.

Knoevenagel Reaction in Water Catalyzed by Mesoporous Silica Materials Synthesized from Industrial Waste Coal Fly Ash (석탄회 산업폐기물로부터 제조한 메조다공성 실리카소재를 촉매로 사용하는 Knoevenagel 수용액 반응)

  • Dhokte, Aashish O.;Khillare, Santosh L.;Lande, Machhindra K.;Arbad, Balasaheb R.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.430-435
    • /
    • 2011
  • Coal fly ash of thermal power plants converted into mesoporous materials MCM-41. The synthesized material was characterized by XRD, FT-IR, SEM, and EDS techniques. The catalytic activity of prepared material was studied for the synthesis of 5-arylindene malononitriles via Knoevenagel condensation of aromatic aldehydes and malonontrile is described. The features of present method are easy handling, stability, reusability, and eco-friendliness of catalyst, high yields, short reaction time, simple experimental and work up procedure.

Catalytic Nitrate Reduction in Water over Mesoporous Silica Supported Pd-Cu Catalysts (중형 기공성 실리카 담체에 담지된 Pd-Cu 촉매를 활용한 수중 질산성 질소 저감 반응)

  • Kim, Min-Sung;Chung, Sang-Ho;Lee, Myung Suk;Lee, Dae-Won;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • In this study, we investigated the activity of Pd and Cu co-incorporated on mesoporous silica support such as MCM-41 and SBA-15 for catalytic nitrate reduction in water. In pure hydrogen flow, nitrate concentration was gradually decreased with the reaction time, but nitrogen selectivity was too low due to very high pH of reaction medium after the reaction. In order to acquire high nitrogen selectivity, we utilized carbon dioxide as a pH buffer, which resulted in higher nitrogen selectivity (about 40%). For the above reaction conditions, Pd-Cu/MCM-41 showed better performance than Pd-Cu/SBA-15. The physicochemical properties of both catalysts were investigated to figure out the relationship between the characteristics of the catalysts and the catalytic activity on the catalytic nitrate reduction by $N_2$ adsoprtion-desorption, X-ray diffraction (XRD), $H_2$-temperature programmed reduction, X-ray photoelectron spectroscopy (XPS) techniques.

Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts (이온성 액체가 담지된 메조포로스 실리카 촉매를 이용한 Tricyclopentadiene 합성)

  • Kim, Su-Jung;Jeon, Jong-Ki;Han, Jeongsik;Yim, Jin-Heong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.190-194
    • /
    • 2016
  • Tricyclopentadiene (TCPD) is one of the important precursors for making tetrahydrotricyclopentadiene, which is well known as a next-generation fuel with high energy density. In this study, TCPD was obtained by polymerization reaction of dicyclopentadiene (DCPD) using an ionic liquid (IL) supported mesoporous silica catalysts. ILs were supported to two kinds of mesoporous silica catalysts with different pore sizes such as MCM-41 and SBA-15. Four different ILs were supported to mesoporous silicas using anionic precursors such as CuCl or $FeCl_3$ and cationic precursors such as triethylamine hydrochloride or 1-butyl-3-methylimidazolium chloride. We proved that IL supported mesoporous silicas showed better catalytic performance than those of using non-supported prestine IL in the aspect of TCPD yield and DCPD conversion. Among four kinds of IL supported mesoporous silica catalysts, CuCl-based IL supported MCM-41 system showed the highest TCPD yield.

Synthesis of Mesoprous Silica using Ricehull ash (쌀겨로부터 추출한 실리카를이용한 메조포어 실리카 제조)

  • Ahn, Na-Young;Kim, Hyeon-Jeong;Lee, Ji-Yun;Jang, Hyun-Tae
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.390-393
    • /
    • 2008
  • 본 합성법으로 제조된 메조포러스 실리카는 X-선 회절패턴, TEM, FT-IR, BET 측정 결과 MCM-41의 특성과 동일하게 나타났다. 연구 결과 PH조절에 따른 MCM의 특성을 표면적, 기공분포, XRD회절분석, SEM, TEM의 결과를 이용하여 파악하였으며, 쌀겨로부터 규소원을 MCM-41의 합성이 가능함을 알 수 있었다. PH조절에 황산과 아세트산 두 가지의 산을 사용하였다. 그 결과 황산보다는 아세트산을 사용하였을 때 수율과 주기공 크기가 증가하는것을 알수있었다. 아세트산을 이용한 경우 팽윤 효과를 나타내어 주기공 크기가 커진 것이다.

  • PDF

Study on the response surface optimization of online upgrading of bio-oil with MCM-41 and catalyst durability analysis

  • Liu, Sha;Cai, Yi-xi;Fan, Yong-sheng;Li, Xiao-hua;Wang, Jia-jun
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.19-30
    • /
    • 2017
  • Direct catalysis of vapors from vacuum pyrolysis of biomass was performed on MCM-41 to investigate the effects of operating parameters including catalyzing temperature, catalyzing bed height and system pressure on the organic yields. Optimization of organic phase yield was further conducted by employing response surface methodology. The statistical analysis showed that operating parameters have significant effects on the organic phase yield. The organic phase yield first increases and then decreases as catalyzing temperature and catalyzing bed height increase, and decreases as system pressure increases. The optimal conditions for the maximum organic phase yield were obtained at catalyzing temperature of $502.7^{\circ}C$, catalyzing bed height of 2.74 cm and system pressure of 6.83 kPa, the organic phase yield amounts to 15.84% which is quite close to the predicted value 16.19%. The H/C, O/C molar ratios (dry basis), density, pH value, kinematic viscosity and high heat value of the organic phase obtained at optimal conditions were 1.287, 0.174, $0.98g/cm^3$, 5.12, $5.87mm^2/s$ and 33.08 MJ/kg, respectively. Organic product compositions were examined using gas chromatography/mass spectrometry and the analysis showed that the content of oxygenated aromatics in organic phase had decreased and hydrocarbons had increased, and the hydrocarbons in organic phase were mainly aliphatic hydrocarbons. Besides, thermo-gravimetric analysis of the MCM-41 zeolite was conducted within air atmosphere and the results showed that when the catalyst continuously works over 100 min, the index of physicochemical properties of bio-oil decreases gradually from 1.15 to 0.45, suggesting that the refined bio-oil significantly deteriorates. Meanwhile, the coke deposition of catalyst increases from 4.97% to 14.81%, which suggests that the catalytic activity significantly decreases till the catalyst completely looses its activity.