• 제목/요약/키워드: MCF10A Cells

검색결과 527건 처리시간 0.028초

고추잎 추출물의 항산화 및 암세포 증식 억제 효과 (Antioxidant and Antiproliferative Activity of Pepper (Capsicum annuum L.) Leaves)

  • 전건욱;한지영;최용민;이선미;김흥태;이준수
    • 한국식품영양과학회지
    • /
    • 제37권8호
    • /
    • pp.1079-1083
    • /
    • 2008
  • 본 연구에서는 고추잎 추출물에 대한 항산화 활성과 암세포 증식억제 활성을 분석하고 각 추출물에 따른 차이를 비교 분석하고자 하였다. 추출물의 항산화력은 ABTS와 DPPH 라디칼 제거능, 환원력 및 금속이온 제거능을 이용하여 평가하였으며 암세포 증식 억제능은 유방암, 대장암 및 위암 세포주를 이용하였다. 각 추출물 중 70% acetone 추출물의 경우 polyphenol 함량(56.6 mg GAE/g residue)과 총 항산화력(450.8 mM TEAC/g residue), DPPH 라디칼 제거능(230.3 mM TEAC/g residue), 환원력(0.5 A700) 측정에서 모두 가장 높은 수치를 나타내었다. 또한 암세포 증식억제활성 측정 결과 대장암세포(HCT116)에서는 70% acetone 추출물이 1 mg/mL의 농도에서 96.2%의 증식억제 활성을 나타냈고 유방암세포(MCF7)에서는 methanol 추출물이 78.4%의 활성을 나타냈으며, 위암세포(MKN45)에서는 water 추출물이 89.7%의 활성을 나타내었다. 본 연구결과는 점차 관심이 높아지고 있는 천연 항산화 항암제로서의 고추잎에 대한 활성연구에 있어 기초자료가 될 것으로 예상되며, 주산물인 고추열매에 비해 그 활용도가 극히 적은 고추잎에 대한 소비촉진에 영향을 끼칠 것으로 기대된다.

활성추적분리법에 의해서 순수분리한 마늘 N-benzyl-N-methyldecan-1-amine이 CT-26 세포주 이식 BALB/C mice의 항암효과 (Activity-guided Purification of N-benzyl-N-methyldecan-1-amine from Garlic and Its Antitumor Activity against CT-26 Colorectal Carcinoma in BALB/C Mice)

  • 라자세카 시타르만;최성미;궈루;추이정웨이;두리마 오타곤바야르;박주하;권영석;곽정호;권영희;민지현;강점순;최영환
    • 생명과학회지
    • /
    • 제29권10호
    • /
    • pp.1062-1070
    • /
    • 2019
  • 마늘(Allium sativum)의 주요 생리활성 성분들은 다양한 종류의 암에 대해 항암효과가 보고되고 있다. 본 연구에서는 활성추적분리방법(activity-guided purification)을 이용하여 마늘의 항암성분을 발굴하고자 하였다. 마늘 에탄올 추출물을 칼럼크로마토그래피로 얻은 각각의 분획물에 대해서 AGS세포의 증식 억제율을 검증하여 가장 효과가 좋은 분획물로부터 물질을 순수분리하여 구조를 동정한 결과 N-benzyl-N-methyldecan-1-amine (NBNMA)로 밝혀졌다. NBNMA의 암생장 억제효능을 검증하기 위해서 CT-26, AGS, HepG2, HCT-116, MCF7, B16F10 및 Sarcoma-180 세포에 대한 in vitro 효과와 CT-26 결장암 세포를 마우스에 이식한 다음 in vivo 효과를 조사하였다. NBNMA는 Bcl-2의 down-regulation과 Bad의 up-regulation을 유도하여 CT-26 세포의 세포사멸 촉진시켰다. 또한, NBNMA는 세포사멸의 외적 및 내적 경로에서 caspases 억제자인 caspase 3과 caspase 9의 활성을 약간 증가시켰다. CT-26세포를 이식한 쥐에 $19.13{\mu}M/kg$의 NBNMA를 21일 동안 경구투여한 결과 암종의 크기가 43% 감소하였다. NBNMA는 in vitro 및 in vivo에서 항암 효과를 나타내었는데, 이러한 결과는 마늘로부터 순수분리한 NBNMA가 대장암치료를 위한 항암제 후보물질로서 활용 가능성이 있을 것으로 기대된다.

An Antiproliferative Ribonuclease from Fruiting Bodies of the Wild Mushroom Russula delica

  • Zhao, Shuang;Zhao, Yong Chang;Li, Shu Hong;Zhang, Guo Qing;Wang, He Xiang;Ng, Tzi Bun
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권4호
    • /
    • pp.693-699
    • /
    • 2010
  • An antiproliferative ribonuclease with a new N-terminal sequence was purified from fruiting bodies of the edible wild mushroom Russula delica in this study. This novel ribonuclease was unadsorbed on DEAE-cellulose, but absorbed on SP-Sepharose and Q-Sepharose. It had a molecular mass of 14 kDa, as judged by fast protein liquid chromatography on Superdex 75 and SDS-polyacrylamide gel electrophoresis. Its optimal pH and optimal temperature were pH 5 and $60^{\circ}C$, respectively. The ranking of its activity toward various polyhomoribonucleotides was poly C> poly G>poly A>poly U. It could inhibit proliferation of HepG2 and MCF-7 cancer cells with an $IC_50$ value of $8.6\;{\mu}M$ and $7.2\;{\mu}M$, respectively. It was devoid of antifungal and HIV-1 reverse transcriptase inhibitory activity.

THE EFFECTS OF TCDD ON THE TRANSFORMATION AND MICRONUCLEUS FORMATION IN CHANG LIVER, HACAT AND MCF10A CELLS

  • Haikwan Jung;Park, Miyoung;Miok Eom;Hoil Kang;Park, Misun;Seungwan Jee;Taikyung Ryeom;Hyeyoung Oh;Kim, Okhee
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Signal transduction in Toxicology
    • /
    • pp.154-154
    • /
    • 2001
  • 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin(TCDD), a prototype of many halogenated aromatic hydrocarbons, is a ubiquitous, persistent environmental contaminant and the most powerful carcinogen categorized by IARC. Despite extensive research, the mechanisms of TCDD-induced carcinogenesis are poorly understood, and its carcinogenic potential in human is not clear.(omitted)

  • PDF

Purification and Characterization of a Laccase from the Edible Wild Mushroom Tricholoma mongolicum

  • Li, Miao;Zhang, Guoqing;Wang, Hexiang;Ng, Tzibun
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권7호
    • /
    • pp.1069-1076
    • /
    • 2010
  • A novel laccase from Tricholoma mongolicum was purified by using a procedure that entailed ion-exchange chromatographies on DEAE-cellulose, CM-cellulose, and Q-Sepharose, and FPLC-gel filtration on Superdex 75. The purified enzyme was obtained with a specific activity of 1,480 U/mg-protein and a final yield of 15%. It was found to be a monomeric protein with a molecular mass of 66 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its N-terminal amino acid sequence was GIGPVADLYVGNRIL, similar to some but also different to other mushroom laccases. The optimum pH and temperature for the purified enzyme were pH 2 to pH 3 and $30^{\circ}C$, respectively. It displayed a low $K_m$ toward 2,7-azinobis (3-ethylbenzothiazolone-6-sulfonic acid) diammonium salt (ABTS) and high $k_{cat}/K_m$ values. The purified laccase oxidized a wide range of lignin-related phenols, but exerted maximal activity on ABTS. It was significantly inhibited by $Hg^{2+}$ ions, and remarkably stimulated by $Cu^{2+}$ ions. It inhibited HIV-1 reverse transcriptase and proliferation of hepatoma HepG2 cells and breast cancer MCF7 cells with an $IC_{50}$ of 0.65 ${\mu}M$, 1.4 ${\mu}M$, and 4.2 ${\mu}M$, respectively, indicating that it is also an antipathogenic protein.

TIMP-1 in the regulation of ECM and apoptosis

  • Liu, Xu-Wen;Jung, Ki-Kyung;Kim, Hyeong-Reh-Choi
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2002년도 창립10주년기념 및 국립독성연구원 의약품동등성평가부서 신설기념 국재학술대회:생물학적 동등성과 의약품 개발 전략을 위한 국제심포지움
    • /
    • pp.89-96
    • /
    • 2002
  • The importance of apoptosis in normal development and pathogenesis has been well recognized, and explosive progress towards dissecting its commitment step has been made during the past decade. Mitochondria, Apaf-1, caspase, and bcl-2 family members play central roles in the commitment step. However, it is still unclear how upstream cell survival pathways regulate apoptosis. It is also unknown whether the bcl-2 family members have any effect on the upstream survival pathways. We have demonstrated that the anti-apoptotic gene product bcl-2 greatly induces expression of the tissue inhibitor of metalloproteinase-1 (TIMP-1) in human breast epithelial cells. Surprisingly, we found that TIMP-1, like bcl-2, is a potent inhibitor of apoptosis induced by a variety of stimuli. Functional studies indicate that TIMP-1 inhibits a classical apoptotic pathway mediated by caspases, and that focal adhesion kinase (FAK)/Pl 3-kinase and mitogen activated protein kinase (MAPK) are critical for TIMP- 1 -mediated cell survival. We also showed specific association of TIMP-1 with the cell surface. Consistently, a 150-H)a surface protein was identified in MCF10A cells that specifically binds TIMP-1. Taken together, we hypothesize that TIMP-I binding on the cell surface induces a cell survival pathway that regulates the common apoptosis commitment step. The results of these studies will address a new paradigm in the regulation of apoptosis by an extracellular molecule TIMP-1, and also greatly enhance our understanding of TIMP-1's pleiotropic activity in many physiological and pathological processes. This information may also be useful in designing more rational therapeutic interventions aimed at modulating the anti-apoptotic activity of TIMP-1 .

  • PDF

Multiple Effects of a Novel Epothilone Analog on Cellular Processes and Signaling Pathways Regulated by Rac1 GTPase in the Human Breast Cancer Cells

  • Zhang, Hong;An, Fan;Tang, Li;Qiu, Rongguo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권2호
    • /
    • pp.109-120
    • /
    • 2014
  • The epothilones are a class of microtubule inhibitors that exhibit a strong antitumor activity. UTD2 is a novel epothilone analog generated by genetic manipulation of the polyketide biosynthetic gene cluster. This study investigated the effects of UTD2 on the actin cytoskeleton and its critical regulators, and the signaling pathways which are essential for cell motility, growth and survival in MCF-7 breast cancer cells. Results showed that UTD2 inhibited the cellular functions of actin cytoskeleton, such as wound-closure, migration and invasion, as well as adhesion. Our study further demonstrated that UTD2 suppressed Rac1 GTPase activation and reduced the activity of PAK1, which is a downstream effector of Rac1, while the activity of Cdc42 was not affected. Additionally, the phosphorylation of p38 and ERK were significantly inhibited, but the phosphorylation of JNK remained the same after UTD2 treatment. Moreover, UTD2 inhibited the activity and mRNA expression of MMP-2, which plays a key role in cell motility. UTD2 also reduced the phosphorylation of Akt, which is an important signaling kinase regulating the cell survival through Rac1. Furthermore, UTD2 interrupted the synergy between Rac1 and Raf in focus formation assays. Taken together, these results indicated that UTD2 exerted multiple effects on the actin cytoskeleton and signaling pathways associated with Rac1. This study provided novel insights into the molecular mechanism of the antineoplastic and antimetastatic activities of epothilones. Our findings also suggest that the signaling pathways regulated by Rac1 may be evaluated as biomarkers for the response to therapy in clinical trials of epothilones.

siRNA Mediated Silencing of NIN1/RPN12 Binding Protein 1 Homolog Inhibits Proliferation and Growth of Breast Cancer Cells

  • Huang, Wei-Yi;Chen, Dong-Hui;Ning, Li;Wang, Li-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.1823-1827
    • /
    • 2012
  • The gene encoding the Nin one binding (NOB1) protein which plays an essential role in protein degradation has been investigated for possible tumor promoting functions. The present study was focused on NOB1 as a possible therapeutic target for breast cancer treatment. Lentivirus mediated NOB1 siRNA transfection was used to silence the NOB1 gene in two established breast cancer cell lines, MCF-7 and MDA-MB-231, successful transfection being confirmed by fluorescence imaging. NOB1 deletion caused significant decline in cell proliferation was observed in both cell lines as investigated by MTT assay. Furthermore the number and size of the colonies formed were also significantly reduced in the absence of NOB1. Moreover NOB1 gene knockdown arrested the cell cycle and inhibited cell cycle related protein expression. Collectively these results indicate that NOB1 plays an essential role in breast cancer cell proliferation and its gene expression could be a therapeutic target.

보정방독탕 에탄올 추출물의 안전성에 대한 연구 (Study on the Safety of Bojungbangdocktang Ethanol Extract)

  • 이은옥;이효정;이효정;정수진;최도영;정희재;안규석;강종구;김성훈
    • 대한암한의학회지
    • /
    • 제15권1호
    • /
    • pp.37-45
    • /
    • 2010
  • Bojungbangdocktang (BJBDT), a formula of eight Oriental herbs, is a modified herbal prescription of Bangdoktang and Bojungbangamtang. Recently, BJBDT was demonstrated to inhibit angiogenesis induced by vascular endothelial growth factor in human umbilical vein endothelial cells, enhance hematopoiesis and protect cisplatin-induced cytotoxicity in normal MCF-10A breast cells. Nevertheless, there is no safety study of BJBDT before clinical trial so far. Thus, in the current study, we investigated the toxicity about ethanol-extracted BJBDT. Male and female Spraque Dawley (SD) rats were given orally by BJBDT at 250, 500, and 1000 mg/kg for 4 weeks. Mortality, clinical signs and measured change of body weight, food consumption and water consumption were observed. In addition, we performed ophthalmologic, urinary, hematological, blood serum biochemical and histopathological examination. Any general toxicity was not found in BJBDT treated group. Also, there were no significant differences in the parameters such as body weight, food consumption and water consumption, a lot of urine and blood factor levels except HCT, MCHC, Ca, TG, Glucose and T-Bilirubin level compared with control group. Although HCT was elevated and TG was decreased in male rats, and MCHC, Glucose and T-Bilirubin were elevated and Ca and HCT were decreased in female rats, these were within normal ranges. Finally, we determined that maximum tolerated dose (MTD) was 1000 mg/kg and no observed adverse effect level (NOAEL) was 500 mg/kg. Taken together, these results demonstrated that BJBDT is very safe to SD rats.

  • PDF

Enhancement of Gene Delivery Using Novel Homodimeric Tat Peptide Formed by Disulfide Bond

  • Lee, Soo-Jin;Yoon, Sung-Hwa;Doh, Kyung-Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권8호
    • /
    • pp.802-807
    • /
    • 2011
  • Cationic liposomes have been actively used as gene delivery vehicle because of their minimal toxicity, but their relatively low efficiency of gene delivery is the major disadvantage of these vectors. Recently, cysteine residue incorporation to HIV-1 Tat peptide increased liposomemediated transfection compared with unmodified Tat peptide. Therefore, we designed a novel modified Tat peptide having a homodimeric (Tat-CTHD, Tat-NTHD) and closed structure (cyclic Tat) simply by using the disulfide bond between cysteines to develop a more efficient and safe nonviral gene delivery system. The mixing of Tat-CTHD and Tat-NTHD with DNA before mixing with lipofectamine increased the transfection efficiency compared with unmodified Tat peptide and lipofectamine only in MCF-7 breast cancer cells and rat vascular smooth muscle cells. However, cyclic Tat did not show any improvement in the transfection efficiency. In the gel retardation assay, Tat-CTHD and Tat-NTHD showed more strong binding with DNA than unmodified Tat and cyclic Tat peptide. This enhancement was only shown when Tat-CTHD and Tat-NTHD were mixed with DNA before mixing with lipofectamine. The effects of Tat- CTHD and Tat-NTHD were also valid in the experiment using DOTAP and DMRIE instead of lipofectamine. We could not find any significant cytotoxicity in the working concentration and more usage of these peptides. In conclusion, we have designed a novel transfection-enhancing peptide by easy homodimerization of Tat peptide, and the simple mix of these novel peptides with DNA increased the gene transfer of cationic lipids more efficiently with no additional cytotoxicity.