• Title/Summary/Keyword: MCF-7 cell lines

Search Result 317, Processing Time 0.024 seconds

Screening for in vitro Cytotoxic Activity of Seaweed, Sargassum sp. Against Hep-2 and MCF-7 Cancer Cell Lines

  • Mary, J. Stella;Vinotha, P.;Pradeep, Andrew M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6073-6076
    • /
    • 2012
  • Discovery of anticancer drugs that kill or disable tumor cells in the presence of normal cells without undue toxicity is a potential challenge for therapeutic care. Several papers in the literature have emphasized the potential implications of marine products such as seaweeds which exhibit antitumor activity. Study attempts to screen the antitumor effect of Sargassum sp, against chosen cell lines such as MCF-7 (Breast cancer) and Hep-2 (Liver Cancer). Ethanol extract of Sargassum sp. was concentrated using a Soxhlet apparatus and dissolved in DMSO. In vitro cytotoxic activity of Sargassum sp at various concentrations ($100{\mu}g/ml-300{\mu}g/ml$) screened for antitumor effect against the chosen cell lines using MTT assay (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole). The study documented that the percentage of cell viability has been reduced with increased concentration, as evidenced by cell death. Sargassum sp extract shows potential cytotoxic activity ($P{\leq}0.05$) with $IC_{50}$ of $200{\mu}g/ml$ and $250{\mu}g/ml$ against Hep-2 and MCF-7 cell lines respectively. The ethanol fraction of Sargassum sp induced cell shrinkage, cell membrane blebbing and formation of apoptotic bodies with evidence of bioactive components as profound influencing factors for anti-tumor effects. Further research need to be explored for the successful application of Sargassum sp as a potent therapeutic tool against cancer.

Apoptosis and Cell Cycle Arrest in Two Human Breast Cancer Cell Lines by Dieckol Isolated from Ecklonia cava

  • You, Sun Hyong;Kim, Jeong-Soo;Kim, Yong-Seok
    • Journal of Breast Disease
    • /
    • v.6 no.2
    • /
    • pp.39-45
    • /
    • 2018
  • Purpose: Dieckol, a phlorotannin compound isolated from Ecklonia cava, has been reported to have antioxidant, antiviral, anti-inflammatory, and anticancer properties. The purpose of this study was to investigate its anticancer effects on human breast cancer cell lines. Methods: In this study, the viability of two human breast cancer cell lines SK-BR-3 and MCF-7 was investigated after dieckol treatment using a WST-1 assay. Apoptosis and cell cycle distribution were assayed via Annexin V-fluorescein isothiocyanate and propidium iodide staining followed by flow cytometric analysis. Immunoblotting analysis was also performed using Bax/Bcl-2 to determine whether the dieckol-induced apoptosis was mediated by the intrinsic apoptotic pathway. Results: In a dose dependent manner, dieckol reduced the number of viable cells and increased the number of apoptotic cells. The effect of dieckol on the cell cycle distribution was analyzed using flow cytometry. Dieckol treatment significantly increased the percentage of MCF-7 and SK-BR-3 in the G2/M phase. Immunoblot analysis revealed that 24 hours of dieckol exposure increased the Bax/Bcl-2 ratio. Conclusion: Dieckol induced cytotoxicity in MCF-7 and SK-BR-3 human breast cancer cells inducing apoptosis and cell cycle arrest. Therefore, it is suggested that dieckol may be a potential therapeutic agent for breast cancer.

In Vitro Cytotoxic Activity of Seed Oil of Fenugreek Against Various Cancer Cell Lines

  • Al-Oqail, Mai Mohammad;Farshori, Nida Nayyar;Al-Sheddi, Ebtesam Saad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1829-1832
    • /
    • 2013
  • In the present study, investigations were carried out to screen the anticancer activities of fenugreek seed oil against cancer cell lines (HEp-2, MCF-7, WISH cells), and a normal cell line (Vero cells). Cytotoxicity was assessed with MTT and NRU assays, and cellular morphological alterations were studied using phase contrast light microscopy. All cells were exposed toi 10-1000 ${\mu}g/ml$ of fenugreek seed oil for 24 h. The results show that fenugreek seed oil significantly reduced the cell viability, and altered the cellular morphology in a dose dependent manner. Among the cell lines, HEp-2 cells showed the highest decrease in cell viability, followed by MCF-7, WISH, and Vero cells by MTT and NRU assays. Cell viability at 1000 ${\mu}g/ml$ was recorded as 55% in HEp-2 cells, 67% in MCF-7 cells, 75% in WISH cells, and 86% in Vero cells. The present study provides preliminary screening data for fenugreek seed oil pointing to potent cytotoxicity against cancer cells.

Anti-proliferating Effects of Porphyra tenera Fractions on Several Cancer Cell Lines in uitro (김 분획물의 in vitro에서의 항발암효과)

  • Shin, Mi-Ok;Bae, Song-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.10
    • /
    • pp.1514-1519
    • /
    • 2005
  • This study was performed to investigate the effects of Porphyra tenera (PT) on cytotoxicity and quinone reductase (QR) activity in the cancer cells. PT was extracted with methanol and further fractionated into five different types: hexane (PTMH), ethyl-ether (PTMEE), ethylacetate (PTMEA) butanol (PTMB) and aquous (PTMA) partition layers. We determined the cytotoxic effect of these layers on C6, HepG2, MCF-7, and HT-29 cell lines by MTT assay. Among the various fractions, hexane (PTMH) of PT showed the strongest cytotoxic effect on C6, HepG2 and MCF-7 cell lines. PTMH displayed very low level of cytotoxicity at the lower concentration levels and at 300 $\mu$g/mL. PTMH resulted in 87.5$\%$ growth inhibition on C6 cell 70 $\%$ on the HepG2 cell and 89$\%$ on the MCF-7 cell, which were significantly high compared to other fractions. A 400 $\mu$g/mL PTMH concentration level, 99$\%$, 94.5$\%$ and 99$\%$ of cell growth inhibition were resulted on the same cell lines. On HT-29 cell line, both hexane (PTMH) and aqueous (PTMA) fraction of PT showed cytotoxic effects, but the Percentage was not as high as previous results tested on other cell lines such as C6 HepG2 and MCF-7 cell lines. Also, we observed quinone reductase (QR) inducing-effects in all fractions of PT on HepG2 cells. The QR inducing effects of the PTMH on HepG2 cells at 150 $\mu$g/mL concentration was 6.6 times higher than the control. Although further studies are needed, the present work suggests that PT was a potential to be used as a chemopreventive.

The effects of human milk proteins on the proliferation of normal, cancer and cancer stem like cells

  • Kang, Nam Mi;Cho, Ssang-Goo;Dayem, Ahmed Abdal;Lee, Joohyun;Bae, Seong Phil;Hahn, Won-Ho;Lee, Jeong-Sang
    • Analytical Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.232-239
    • /
    • 2018
  • Human breast milk (HBM) provides neonates with indispensable nutrition. The present study evaluated the anti-cancer activity of diluted and pasteurized early HBM (< 6 weeks' lactation) on human breast cancer cell lines. The cell lines MCF7 and MDA-MB231 were exposed to 1 % HBM from the 1st, 3rd, and 6th weeks of lactation and exhibited reduced proliferation rates. As controls, breast cell lines (293T and MCF-10A), breast cancer cell lines (MCF-7 and MDA-MB-231), and $CD133^{hi}CXCR4^{hi}ALDH1^{hi}$ patient-derived human cancer stem-like cells (KU-CSLCs) were treated with prominent milk proteins ${\beta}$-casein, ${\kappa}$-casein, and lactoferrin at varying doses (10, 50, and $100{\mu}g$) for 24 or 48 hrs. The impact of these proteins on cell proliferation was investigated. Breast cancer cell lines treated with ${\kappa}$-casein and lactoferrin exhibited significantly reduced viability, in both a dose- and time-dependent manner. Interestingly, ${\kappa}$-casein selectively impacted only cancer (but not normal breast) cell lines, particularly the more malignant cell line. However, ${\beta}$-casein-exposed human breast cancer cell lines exhibited a significantly higher proliferation rate. Thus, ${\kappa}$-casein and lactoferrin appear to exert selective anti-cancer activities. Further studies are warranted to determine the mechanisms underlying ${\kappa}$-casein- and lactoferrin-mediated cancer cell-selective cytotoxic effects.

Inhibitive Effects of Cotton Plant Sectional Extracts in Cancer Cell Lines (목화 부위별 추출물의 암 세포주 증식 억제 효과)

  • Moon, Gyoung-Il;Kim, Hyung-Woo;Jeong, Hyun-Woo;Cho, Su-In
    • The Korea Journal of Herbology
    • /
    • v.21 no.1
    • /
    • pp.57-62
    • /
    • 2006
  • Objectives : This study was carried out to investigate the inhibitive effects of cotton plant sectional extracts in cancer cell lines, Calu-6(human, Caucasian, lung, adenocarcinoma) and MCF-7(human, Caucasian, breast, adenocarcinoma). The incidence of cancer has been increasing even in korea due to the change of dietary life and westernization and becoming conspicuous as the disease threatening health. But cancer treatment have not been fully effective against the high incidence or low survival rate of most cancer. Methods : Calu-6 and MCF-7 cells were cultured and seeded in cell culture plates, respectively. And sectional extracts of cotton plant were treated to MCF-7 cells. Results and Conclusion : Sectional extracts of cotton plant showed no anti-proliferative effect on MCF-7 cells, but root and stem extracts showed strong anti-proliferative effects on Calu-6 cells. Fruit, leaf and flower extracts also showed anti-proliferative effects on Calu-6 cells but not so much like root and stem extracts. But seed extract showed no anti-proliferative effect on Calu-6 cells.

  • PDF

Differential Effects of Resveratrol and its Oligomers Isolated from Seeds of Paeonia lactiflora (Peony) on Proliferation of MCF-7 and ROS 17/2.8 Cells

  • Kim, Hyo-Jin;Lee, Won-Jung;Park, Yun-Hee;Cho, Sung-Hee;Park, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.356-364
    • /
    • 2003
  • A methanol extract from seeds of Paeonia lactiflora (Paeoniaceae, peony) was found to possess different antiproliferative activities against four different human cancer cell lines: Hela, MCF-7, HepG2 and HT-29. Furthermore, five different methanol (20, 40, 60, 80 and 100 % MeOH) fractions obtained by fractionation of the methanol extract of the seeds on a Diaion HP-20 column exhibited differential antiproliferative effects against the above four cancer cell lines. Among five fractions, the 60 % MeOH fraction showed relatively lower antiproliferative activity on MCF-7 estrogen-sensitive breast cancer cell than the other cancer cell lines. Systematic separation of 60% the MeOH fraction by silica gel and Sephadex LH-20 columns led to the isolation of four known stilbenes, trans-resveratrol (1), trans-(+)- $\varepsilon$ -viniferin (2), gnetin H (3) and suffruticosol B (4). The four stilbenes (1∼4) exerted differential biphasic effects on cell proliferation of MCF-7 cells in a similar manner as genistein, a soybean isoflavone used as a positive reference, in the concentration range from 1.0 to 200 $\mu$M. Three stilbenes (1 ∼ 3) weakly stimulated the proliferation of MCF -7 cells at doses below 10 JIM. However, strong antiproliferative effects on MCF-7 cell were exerted by extract 1 at a dose of 200 JIM, and by 2 and 3 at doses above 25 $\mu$M. In contrast, 4 inhibited the proliferation of MCF-7 cell at a dose below 25 $\mu$M, but stimulated cell proliferation at concentrations of 50 and 100 $\mu$M. All four stilbenes (1∼4) stimulated the proliferation of ROS 17/2.8 osteoblast-like cells in the range of 10$^{-10}$ ∼10$^{-1}$ $\mu$M. Compound 1 exhibited especially potent proliferative activity, although its activity was weaker than that of genistein. Additionally, three resveratrol oligomers (2∼4) also exhibited concentration-dependently moderate proliferative activity, but less than that of 1. These results suggest that resveratrol, and its dimer and trimers from the seeds of Paeonia lactiflora may act as a phytoestrogen, but in a somewhat different manner from that of genistein.

IN HUMAN BREAST CANCER MCF-7 CELLS, ESTROGEN INVOLVES IN CYPIA1 GENE EXPRESSION.

  • Hwang, J.E.;S.H.Eo;Cho, S.N.;Y.Y.Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.107-107
    • /
    • 1997
  • Cytochrome P450 enzymes have been intensively investigated in hepatic tissues and several mammalian cell lines. Compared to most studies about cytochrome P450 isozymes in liver in vivo and hepatic, cell lines in vitro, the study of cytochrome P450IA1 in human breast cancer cells could be very important to understand the mechanism of the regulation of CYPIA1 gene expression and cell growth. MCF-7 human breast cancer cells are well characterized to study estrogen and antiestrogen action due to the fact that they contain high level of estrogen receptor and have biological markers characterized. And also MCF-7 cells express high level of arylhydrocarbon hydroxylase activity and human cytochrome P450IA1 cDNA was cloned from MCF-7 cells. Ah receptor was characterized in many breast cancer cell lines and polycyclic aromatic hydrocarbon such as 3-MC induced the expression of CYPIA1 gene and cytochrome P450- dependent monooxygenase activity. We undertook a study to examine the effect of estrogens and other chemicals on the regulation of human CYPIA1 gene expression in MCF-7 cells via RTPCR analysis, that might help us to understand the mechanism of the regulation of CYPIA1 gene expression and MCF-7 cell growth. Expression vector containing the functional 5'-regulatory region of human CYPIA1 fused to the CAT reporter gene was transfected into estrogen receptor positive MCF-T cells or estrogen receptor negative MDA-MB-231 cells. After these cells were treated with various chemicals, RTPCR was carried out to measure both CYPIA1 mRNA and CAT mRNA levels. 1nM 3-MC increased in both P450 and CAT mRNA levels over those of control by two folds in MCF-7 cells but does not in MDA-MB-231 cells. Estrogen or tamoxifen or retinoic acid or chrysin decreased in both P450 and CAT mRNA levels that were induced by 3-MC in MCF-7 when each chemical was administered with 3-MC concomitantly. These results suggested that the level of CYPIA1 gene expression is modulated with estrogen-related molecules and make it possible to speculate that ER is related to CYPIA1 gene expression and cell growth in breast cancer cells. [Supported by grants from the Korean Ministry of Education ]

  • PDF

Differential Expression of HSP90β in MDA-MB-231 and MCF-7 Cell Lines after Treatment with Doxorubicin

  • Jokar, Fereshte;Mahabadi, Javad Amini;Salimian, Morteza;Taherian, Aliakbar;Hayat, Seyyed Mohammad Gheibi;Sahebkar, Amirhossein;Atlasi, Mohammad Ali
    • Journal of Pharmacopuncture
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 2019
  • Background: Breast cancer is a complex, heterogeneous disease and one of the most common malignancies in women worldwide. The efficacy of chemotherapy as an important breast cancer treatment option has been severely limited because of the inherent or acquired resistance of cancer cells. The molecular chaperone heat shock protein 90 (HSP90) upregulated in response to cellular stress is required for functions such as conformational maturation, activation and stability in more than 200 client proteins, mostly of the signaling type. In this study, the expression of HSP90 isoforms including $HSP90{\alpha}$ and $HSP90{\beta}$ in breast cancer cell lines before and after treatment with doxorubicin (DOX) was assessed. Material and Methods: The cell cytotoxicity of DOX in MDA-MB-231 and MCF-7 cell lines was determined using the MTT assay. immunofluorescence and western blotting techniques were used to determine the expression of $HSP90{\beta}$ in the cell lines before and after DOX treatment. Immunofluorescence was also conducted to ascertain the expression of $HSP90{\alpha}$. Results: The MTT assay results showed that the MDA-MB-231 cells ($IC_{50}=14.521{\mu}M$) were more sensitive than the MCF-7 cells ($IC_{50}=16.3315{\mu}M$) to DOX. The immunofluorescence results indicated that the expression of $HSP90{\alpha}$ in both cell lines decreased after exposure to DOX. The western blot and immunofluorescence analyses showed that $HSP90{\beta}$ expression decreased in the MCF-7 cells but increased in the MDA-MB-231 cells after DOX treatment. Conclusion: The obtained results suggested that $HSP90{\alpha}$ and $HSP90{\beta}$ expression levels were reduced in the MCF-7 cells after exposure to DOX. In the MDA-MB-231 cells, $HSP90{\alpha}$ expression was reduced while $HSP90{\beta}$ was found to be overexpressed following DOX treatment.

The Effect of Blueberry on ROS Accumulation and Cell Death in Human Normal Breast Epithelial(MCF10A) and Breast Cancer(MCF7) Cells (블루베리가 정상유선세포와 유방암세포의 ROS 축적과 세포사멸에 미치는 영향)

  • Lee, Se-Na;Kang, Keum-Jee
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.4
    • /
    • pp.416-424
    • /
    • 2008
  • In an effort to elucidate the differential actions of blueberry(BB) in both normal and cancer cells, we utilized human breast cell lines to assess the accumulation of radical oxygen species(ROS) and ROS-associated apoptosis in both human normal breast epithelial(MCF10A) and breast cancer(MCF7) cells. BB extract was added to the cultures at a final concentration of $20{\mu}g/m{\ell}$ for 0(control), 6, 12, and 24 hr intervals. The MCF10A cells evidenced no marked ROS accumulation in the presence of BB, whereas the MCF7 cells evidenced clear ROS accumulation upon BB treatment from 12 hours forward. The number of dying or dead cells did not increase in the BB-treated MCF10A cell groups, whereas that number increased profoundly from 12 hr forward. Furthermore, the expression levels of certain stress-related, and pro- and antiapoptotic gene products evidenced differential responses to BB treatment between the MCF10A and MCF7 cell groups. These results indicate that the components of BB extract differentiate cancer cells by not preventing ROS accumulation within cells and by inducing ROS-associated cell death in cancer cells. However, no marked ROS accumulation or induction of cell death was noted in the normal breast epithelial cells. The fact that BB extract exerted a differential effect on cancer cells opens further directions of research regarding the specific components that exert the differential BB-mediated effects in the selective prevention of normal cells and therapy for cancer tissues in the physiological body.