Browse > Article
http://dx.doi.org/10.5806/AST.2018.31.6.232

The effects of human milk proteins on the proliferation of normal, cancer and cancer stem like cells  

Kang, Nam Mi (Department of Nursing, Konkuk University)
Cho, Ssang-Goo (Department of Stem Cell and Regenerative Biotechnology, Konkuk University)
Dayem, Ahmed Abdal (Department of Stem Cell and Regenerative Biotechnology, Konkuk University)
Lee, Joohyun (Department of Crop Science, Konkuk University)
Bae, Seong Phil (Department of Pediatrics, School of Medicine, Soon Chun Hyang University, Seoul Hospital)
Hahn, Won-Ho (Department of Pediatrics, School of Medicine, Soon Chun Hyang University, Seoul Hospital)
Lee, Jeong-Sang (Department of Biotechnology and Functional Foods, Jeonju University)
Publication Information
Analytical Science and Technology / v.31, no.6, 2018 , pp. 232-239 More about this Journal
Abstract
Human breast milk (HBM) provides neonates with indispensable nutrition. The present study evaluated the anti-cancer activity of diluted and pasteurized early HBM (< 6 weeks' lactation) on human breast cancer cell lines. The cell lines MCF7 and MDA-MB231 were exposed to 1 % HBM from the 1st, 3rd, and 6th weeks of lactation and exhibited reduced proliferation rates. As controls, breast cell lines (293T and MCF-10A), breast cancer cell lines (MCF-7 and MDA-MB-231), and $CD133^{hi}CXCR4^{hi}ALDH1^{hi}$ patient-derived human cancer stem-like cells (KU-CSLCs) were treated with prominent milk proteins ${\beta}$-casein, ${\kappa}$-casein, and lactoferrin at varying doses (10, 50, and $100{\mu}g$) for 24 or 48 hrs. The impact of these proteins on cell proliferation was investigated. Breast cancer cell lines treated with ${\kappa}$-casein and lactoferrin exhibited significantly reduced viability, in both a dose- and time-dependent manner. Interestingly, ${\kappa}$-casein selectively impacted only cancer (but not normal breast) cell lines, particularly the more malignant cell line. However, ${\beta}$-casein-exposed human breast cancer cell lines exhibited a significantly higher proliferation rate. Thus, ${\kappa}$-casein and lactoferrin appear to exert selective anti-cancer activities. Further studies are warranted to determine the mechanisms underlying ${\kappa}$-casein- and lactoferrin-mediated cancer cell-selective cytotoxic effects.
Keywords
human breast milk; beta-casein; kappa-casein; lactoferrin; Cell-proliferation; breast cancer cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Hallgren, S. Aits, P. Brest, L. Gustafsson, A. K. Mossberg, B. Wullt, and C. Svanborg, Adv. Exp. Med. Biol., 606, 217-240 (2008).
2 A. do Carmo Franca-Botelho, M. C. Ferreira, J. L. Franca, E. L. Franca, and A. C. Honorio-Franca, Asian. Pac. J. Cancer. Prev., 13(11), 5327-5332 (2012).   DOI
3 Y. Zhou, J. Chen, Q. Li, W. Huang, H. Lan, and H. Jiang, Breastfeed. Med., 10(3), 175-182 (2015).   DOI
4 S. S. Hasson, J. Z. Al-Busaidi, Z. A. Al-Qarni, S. Rajapakse, S. Al-Bahlani, M. A. Idris, and T. A. Sallam, Asian. Pac. J. Cancer. Prev., 16(15), 6651-6661 (2015).   DOI
5 H. M. Korashy, Z. H. Maayah, A. R. Abd-Allah, A. O. El-Kadi, and A. A. Alhaider, J. Biomed. Biotechnol., 2012, 593195 (2012).
6 A. K. Leung and R. S. Sauve, J Natl Med Assoc, 97(7), 1010-1019 (2005).
7 W. H. Hahn, J. H. Song, J. B. Seo, J. E. Lee, J. S. Lee, S. Song, J. Lee, and N. M. Kang, Asia Pac. J. Clin. Nutr., 27(1), 204-210 (2018).
8 A. Villavicencio, M. S. Rueda, C. G. Turin, and T. J. Ochoa, Biochem. Cell. Biol., 95(1), 12-21 (2017).   DOI
9 Y. Liao, D. Weber, W. Xu, B. P. Durbin-Johnson, B. S. Phinney, and B. Lonnerdal, J. Proteome. Res., 16(11), 4113-4121 (2017).   DOI
10 Y. Zhang, C. F. Lima, and L. R. Rodrigues, Nutr. Rev., 72(12), 763-773 (2014).   DOI
11 C. M. Yin, J. H. Wong, J. Xia, and T. B. Ng, Curr. Protein. Pept. Sci., 14(6), 492-503 (2013).   DOI
12 M. Arias, A. L. Hilchie, E. F. Haney, J. G. Bolscher, M. E. Hyndman, R. E. Hancock, and H. J. Vogel, Biochem. Cell. Biol., 95(1), 91-98 (2017).   DOI
13 J. R. Kanwar, R. K. Kanwar, X. Sun, V. Punj, H. Matta, S. M. Morley, A. Parratt, M. Puri, and R. Sehgal, Curr. Protein. Pept. Sci., 10(4), 308-338 (2009).   DOI
14 P. W. Parodi, Curr. Pharm. Des., 13(8), 813-828 (2007).   DOI
15 M. Zimecki and M. L. Kruzel, J. Exp. Ther. Oncol., 6(2), 89-106 (2007).
16 R. Jiang and B. Lonnerdal, Biochem. Cell. Biol., 95(1), 99-109 (2017).   DOI
17 H. M. Habib, W. H. Ibrahim, R. Schneider-Stock, and H. M. Hassan, Food. Chem., 141(1), 148-152 (2013).   DOI
18 D. C. Duarte, A. Nicolau, J. A. Teixeira, and L. R. Rodrigues, J. Dairy. Sci., 94(1), 66-76 (2011).   DOI
19 S. H. Gopal and S. K. Das, J Cancer Clin Trials, 1(3), e105 (2016).
20 M. Kampa, S. Loukas, A. Hatzoglou, P. Martin, P. M. Martin, and E. Castanas, Biochem. J., 319(Pt 3), 903-908 (1996).   DOI
21 G. Bonuccelli, R. Castello-Cros, F. Capozza, U. E. Martinez-Outschoorn, Z. Lin, A. Tsirigos, J. Xuanmao, D. Whitaker-Menezes, A. Howell, M. P. Lisanti, and F. Sotgia, Cell. Cycle., 11(21), 3972-3982 (2012).   DOI
22 S. W. Park, J. Y. Kim, Y. S. Kim, S. J. Lee, S. D. Lee, and M. K. Chung, World. J. Mens. Health., 32(2), 76-82 (2014).   DOI
23 O. A. Koval, A. V. Tkachenko, A. S. Fomin, D. V. Semenov, A. A. Nushtaeva, E. V. Kuligina, E. L. Zavjalov, and V. A. Richter, PLoS. One., 9(4), e93921 (2014).   DOI
24 E. R. Sauter, W. Davis, W. Qin, S. Scanlon, B. Mooney, K. Bromert, and W. R. Folk, Biomark. Med., 3(5), 577-588 (2009).   DOI
25 M. J. Oliveira, J. Van Damme, T. Lauwaet, V. De Corte, G. De Bruyne, G. Verschraegen, M. Vaneechoutte, M. Goethals, M. R. Ahmadian, O. Muller, J. Vandekerckhove, M. Mareel, and A. Leroy, Embo. J., 22(22), 6161-6173 (2003).   DOI