• Title/Summary/Keyword: MCAO

Search Result 140, Processing Time 0.023 seconds

Effects of Sopung-tang on Cerebral Infarct Induced by MCAO in Hyperlipidemic Rats (소풍탕(疏風湯)이 고지혈증 흰쥐의 뇌경색에 미치는 영향)

  • Choi, Seo-Woo;Kim, Youn-Sub
    • The Korea Journal of Herbology
    • /
    • v.29 no.3
    • /
    • pp.71-78
    • /
    • 2014
  • Objectives : This study evaluates the neuroprotective effects of Sopung-tang, a mixture of Notopterygii Rhizoma, Saposhnikoviae Radix, Angelicae Gigantis Radix, Cnidii Rhizoma, Hoelen, Aurantii Nobilis Pericarpium, Pinelliae Tuber, Linderae Radix, Angelicae Dahuricae Radix, Cyperi Rhizoma, Cinnamomi Ramulus, Asari Radix, Glycyrrhizae Radix on the cerebral infarct combined with hyperlipidemia. Method : The hyperlipidemia was induced by the beef tallow 30% diet for 14 days on Sprague-Dawley rats. The cerebral infarct was induced by the middle cerebral artery occlusion (MCAO) for 2 hours with intraluminal thread method. Then the water extract of Sopung-tang was administered a day for 5 days at 3 hours after the cerebral infarct by MCAO. Effect of Sopung-tang was evaluated with the infarct volume and edema percentage by a TTC-stained brain section, and the expressions of Bax and Bcl-2 in the brain tissue by a immunohistochemical stain method. Results : Sopung-tang reduced the infarct size partly in a TTC-stained brain section of the hyperlipidemic MCAO rats. Sopung-tang reduced the infarct volume of the hyperlipidemic MCAO rats significantly. Sopung-tang reduced the edema percentage of the hyperlipidemic MCAO rats, but not significant statistically. Sopung-tang suppressed the Bax expressions in the cerebral penumbra and caudate putamen of the hyperlipidemic MCAO rats significantly. Sopung-tang upregulated the Bcl-2 expression in the caudate putamen of the hyperlipidemic MCAO rats. Conclusion : These results suggest that Sopung-tang plays an anti-apoptotic neuroprotective effect through the suppression of Bax and up-regulation of Bacl-2 expressions in the brain tissues.

Transcriptome Analysis of the Striatum of Electroacupuncture-treated Naïve and Ischemic Stroke Mice

  • Hong Ju Lee;Hwa Kyoung Shin;Ji-Hwan Kim;Byung Tae Choi
    • Journal of Pharmacopuncture
    • /
    • v.27 no.2
    • /
    • pp.162-171
    • /
    • 2024
  • Objectives: Electroacupuncture (EA) has been demonstrated to aid stroke recovery. However, few investigations have focused on identifying the potent molecular targets of EA by comparing EA stimulation between naïve and disease models. Therefore, this study was undertaken to identify the potent molecular therapeutic mechanisms underlying EA stimulation in ischemic stroke through a comparison of mRNA sequencing data obtained from EA-treated naïve control and ischemic stroke mouse models. Methods: Using both naïve control and middle cerebral artery occlusion (MCAO) mouse models, EA stimulation was administered at two acupoints, Baihui (GV20) and Dazhui (GV14), at a frequency of 2 Hz. Comprehensive assessments were conducted, including behavioral evaluations, RNA sequencing to identify differentially expressed genes (DEGs), functional enrichment analysis, protein-protein interaction (PPI) network analysis, and quantitative real-time PCR. Results: EA stimulation ameliorated the ischemic insult-induced motor dysfunction in mice with ischemic stroke. Comparative analysis between control vs. MCAO, control vs. control + EA, and MCAO vs. MCAO + EA revealed 4,407, 101, and 82 DEGs, respectively. Of these, 30, 7, and 1 were common across the respective groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed upregulated DEGs associated with the regulation of inflammatory immune response in the MCAO vs. MCAO + EA comparison. Conversely, downregulated DEGs in the control vs. control + EA comparison were linked to neuronal development. PPI analysis revealed major clustering related to the regulation of cytokines, such as Cxcl9, Pcp2, Ccl11, and Cxcl13, in the common DEGs of MCAO vs. MCAO + EA, with Esp8l1 identified as the only common downregulated DEG in both EA-treated naïve and ischemic models. Conclusion: These findings underscore the diverse potent mechanisms of EA stimulation between naïve and ischemic stroke mice, albeit with few overlaps. However, the potent mechanisms underlying EA treatment in ischemic stroke models were associated with the regulation of inflammatory processes involving cytokines.

The Effect of Hirudin Herbal-acupuncture on Neurotransmitters against Middle Cerebral Artery Occulsion(MCAO) Rats (Hirudin 약침(藥鍼)이 뇌허혈(腦虛血)을 유발(誘發)시킨 흰쥐의 신경전도물질(神經傳達物質)에 미치는 영향(影響))

  • Suk, Jae-Wook;Jung, Tae-Young;Leem, Seong-Cheol;Seo, Jeong-Chul;Han, Sang-Won
    • Journal of Pharmacopuncture
    • /
    • v.7 no.2
    • /
    • pp.29-41
    • /
    • 2004
  • Objective : This experimental studies were performed in order to prove the effect of Hirudin Herbal-acupuncture by using rats that had neuronal damage due to the Middle Cerebral Artery Occulsion(MCAO). Method : We observed the change of extracellular concentrations(${\mu}M$) of dopamine, DOPAC, HVA, HIAA, glutamate, aspartate, GABA, glysine, taurine, alanine, and tyrosine as extracted by vivo microdialysis, in the Hirudin Herbal-acupuncture administrated rats($240{\sim}260g$, Sprague-Dawley) subjected to the MCAO. The dialysates were extracted three times before the MCAO and six times after the MCAO every 20 minutes, and analysed by highperformance liquid chromatography(HPLC). Results : Hirudin Herbal-acupuncture significantly inhibited glutamate, aspartate, and tyrosine which are stimulant neurotransmitters at brain ischemia, and it significantly decreased glycine, GABA, taurine, and alanine which are inhibitory neurotransmitters at brain ischemia. Conclusion : Hirudin Herbal-acupuncture may prevent delayed neuronal death(DND) in selectively vulnerable focal areas of the brain effectively.

Effect of Gastrodiae Rhizoma on Apoptosis in Cerebral Infarction Induced by Middle Cerebral Artery Occlusion in Rats (천마가 중대뇌동맥 폐쇄 흰쥐의 신경세포 자연사에 미치는 영향)

  • Youn, You-Suk;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2009
  • Objectives : This study evaluates neuroprotective effect of Gastrodiae Rhizoma on apoptosis in the cerebral infarct. Methods : Cerebral infarct was induced by the middle cerebral artery occlusion (MCAO) for 2 hours with intraluminal thread method in Sprague-Dawley rats. Then ethanol extract of Gastrodiae Rhizoma was administered orally for 3 days. Infarct area and volume were evaluated with TTC staining. Neuronal apoptosis was identified with TUNEL labeling. Apoptosis modulatory effect was observed with immunohistochemical Bax, Bcl-2, iNOS, and MMP-9 expressions in penumbra. Results : 1. Ethanol extract of Gastrodiae Rhizoma reduced infarct size partly and volume significantly of in the MCAO rat brain. 2. Ethanol extract of Gastrodiae Rhizoma reduced TUNEL positive cell ratio in the penumbra of MCAO rat brain significantly. 3. Ethanol extract of Gastrodiae Rhizoma suppressed Bax, iNOS and MMP-9 expression in the penumbra of MCAO rat brain significantly. 4. Ethanol extract of Gastrodiae Rhizoma did not change Bcl-2 expression in the penumbra of MCAO rat brain. But expression ratio of Bcl-2 against Bax was increased in the Gastrodiae Rhizoma group. Conclusions : These results suggest that Gastrodiae Rhizoma plays an anti-apoptotic neuroprotective effect through suppression of Bax, iNOS, and MMP-9 expressions and relative up-regulation of Bcl-2 in the ischemic brain tissue.

Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells

  • Koh, Phil-Ok
    • Laboraroty Animal Research
    • /
    • v.33 no.3
    • /
    • pp.244-250
    • /
    • 2017
  • ${\alpha}$-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined ${\alpha}$-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in ${\alpha}$-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased ${\alpha}$-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that ${\alpha}$-synuclein regulates neuronal survival, and low levels of ${\alpha}$-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in ${\alpha}$-synuclein and consequently causes serious brain damage.

Effects of Eucommiae Cortex on Myofiber Type Transition and MyoD Expression in Hind Limb Muscle Atrophy of Rats (두충(杜沖) 이 근육위축 흰쥐의 후지 근섬유형 및 MyoD 발현에 미치는 영향)

  • Yun, Duk-Young;Park, Seong-Ha;Lee, Jong-Soo
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.18 no.1
    • /
    • pp.47-63
    • /
    • 2008
  • Objectives : Eucommiae cortex is reported that it helps bone and skeletal muscle stronger. In case of bone, many report is presented, but reports related to skeletal muscle are rarely existed. So in order to investigate effects of Eucommiae cortex on the skeletal muscle atrophy following stroke, cerebral infarct was induced by the middle cerebral artery occlusion (MCAO) in the rats. Methods : In order to induce MCAO rats, nylon suture was advanced and then blocked middle cerebral artery(MCA). Water extract of Eucommiae cortex was treated for 15 days, once a day orally, after the MCAO. Effects were evaluated with muscle weights, muscle fiber type composition, cross-sectioned area of muscle fibers in soleus and gastrocnemius of the unaffected and affected hind limbs. And MyoD protein expression in gastrocnemius was demonstrated with immunohistochemistry and western blotting. Results : In the affected hind limb of the MCAO rats, muscle weight loss of gastrocnemius and tibialis anterior muscles were attenuated by Eucommiae cortex treatment. In soleus muscle of the affected hind limb of the MCAO rats, increase of type-I fibers and decrease of type-II fibers were induced by Eucommiae cortex treatment. In soleus muscle of the affected hind limb of the MCAO rats, decrease of cross-sectioned areas of type-I fibers was attenuated by Eucommiae cortex treatment. In gastrocnemius muscle of the affected hind limb of the MCAO rats, increase of type-I fibers and decrease of type-II fibers were induced by Eucommiae cortex treatment. In gastrocnemius muscle of the affected hind limb of the MCAO rats, decreases of cross-sectioned areas of type-I and type-II fibers were attenuated by Eucommiae cortex treatment. In gastrocnemius muscle of the affected and unaffected hind limb of the MCAO rats, MyoD expressions were increased by Eucommiae cortex treatment. Conclusions : These results suggest that Eucommiae cortex has a protective effect against muscle atrophy, through the inhibition of the muscle cell apoptosis, following the central nervous system demage.

The Protective Effect of Hirudin Herbal-acupuncture against the Neuronal Damage Induced by Middle Cerebral Artery Occulsion(MCAO) in Rats (Hirudin 약침(藥鍼)이 중대뇌동맥폐색(中大腦動脈閉塞)으로 유발(誘發)된 흰쥐의 신경손상(神經損傷) 보호(保護) 효과(效果))

  • Suk, Jae-wook;Jung, Tae-young;Lim, Seong-cheol;Seo, Jeong-chul;Kim, Mi-ryeo;Yang, Chae-ha;Han, Sang-won
    • Journal of Acupuncture Research
    • /
    • v.21 no.4
    • /
    • pp.207-215
    • /
    • 2004
  • Objective : In order to prove the effect of Hirudin Herbal-acupuncture this experimental studies were performed by using rats that had neuronal damage due to the Middle Cerebral Artery Occulsion(MCAO). Methods : Microdialysis probes were implanted into the coordinate of striatum of anesthetized rats which consist of sham-operated 8 rats, MCAO-operated 8 rats and Hirudin Herbal-acupuncture administrated 8 rats before MCAO operating. The Hirudin Herbal-acupuncture(0.5mg/kg) was administrated to rats 30 minutes before having an operation causing the MCAO. The surgical excision lead the cross resected brain to the acute ischemic state. The brain was sliced in 2mm thickness and stained with cresyl violet buffer for the measurement of cerebral infarcted area and volume. Results : Based on the result of the tissue inspection for the cerebral ischemic cell, Hirudin Herbal-acupuncture significantly protect neurocytes. Conclusion : We suggest Hirudin Herbal-acupuncture produces protective effects against the neuronal damage induced by MCAO. Therefore, Hirudin Herbal-acupuncture may prevent delayed neuronal death(DND) in selectively vulnerable focal areas of the brain effectively.

  • PDF

The Effects of tDCS and Montoya Stair Task on Sensorimotor Recovery and GFAP Expression in MCAo induced Stroke Rat Model

  • Sim, Ki-Cheol;Kim, Gi-Do;Kim, Kyung-Yoon;An, Ho-Jung;Lee, Joon-Hee;Min, Kyoung-Ok;Kim, Gye-Yeop
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.2 no.1
    • /
    • pp.193-200
    • /
    • 2011
  • This study is intended to examine the tDCS and Montoya stair task(MST) on sensorimotor recovery and glial scar expression in MCAo induced stroke model of rat. To achieve this goal, this study selected 80 SD rats of 8 weeks. The experiment groups were divided them into four groups, and assigned 20 rats to each group. Group I was a experimental control group; GroupII was a tDCS application group after MCAo; Group III was a MST application group after MCAo; Group IV was a tDCS and MST application group after MCAo. In each group, neurological function test measurement, motor behavior test, montoya stair task test, immunohistochemistric finding of GFAP expression finding were analyzed. In motor behavior test, the outcome of group I was significantly difference than the other group, especially from 14days. In montoya stair task test, the outcome of group I was significantly lower than the other group especially, group II were significantly different on 14days and group IV was most significantly difference than the other group. In immunohistochemistric finding, group II, III, IV were decrease GFAP expression on depend on time stream. These results throughout the MCAo due to focal ischemic brain injury rat model four weeks tDCS and MST was applied, when the neurobehavioural, upper extremity function and ability, histopathologic data suggest that sensorimotor function recovery and a positive influence on glial scar decrease and confirmed that.

The Protective Effect of Phospholipase $A_2(PLA_2)$ Herbal-acupuncture against the Neuronal Damage Induced by Middle Cerebral Artery Occulsion(MCAO) in Rats. (Phospholipase $A_2(PLA_2)$ 약침(藥鍼)이 중대뇌동맥폐색(中大腦動脈閉塞)으로 유발(誘發)된 흰쥐의 신경손상(神經損傷) 보호(保護) 효과(效果)에 미치는 영향)

  • Kim, Sung-Min;Jung, Tae-Young;Leem, Seong-Cheol;Seo, Jeong-Chul;Kim, Mi-Ryeo;Yang, Chae-Ha;Han, Sang-Won
    • Korean Journal of Acupuncture
    • /
    • v.21 no.3
    • /
    • pp.89-96
    • /
    • 2004
  • Objectives : In order to prove the effect of Phospholipase $A_2(PLA_2)$ Herbal-acupuncture, this experimental studies were performed by using rats that had neuronal damage due to the Middle Cerebral Artery Occulsion(MCAO). Methods : Microdialysis probes were implanted into the coordinate of striatum of anesthetized rats which consist of sham-operated 8 rats, MCAO-operated 8 rats and $PLA_2$ Herbal-acupuncture administrated 8 rats before MCAO operating. The $PLA_2$ Herbal-acupuncture(0.5mg/kg) was administrated to rats 30 minutes before having an operation causing the MCAO. The surgical excision lead the cross resected brain to the acute ischemic state. The brain was sliced in 2mm thickness and stained with cresyl violet buffer for the measurement of cerebral infarcted area and volume. Results : Based on the result of the tissue inspection for the cerebral ischemic cell, $PLA_2$ Herbal-acupuncture significantly protect neurocytes. Conclusions : We suggest $PLA_2$ Herbal-acupuncture produces protective effects against the neuronal damage induced by MCAO. Therefore, $PLA_2$ Herbal-acupuncture may prevent delayed neuronal death(DND) in selectively vulnerable focal areas of the brain effectively.

  • PDF

Hyperglycemia aggravates decrease in alpha-synuclein expression in a middle cerebral artery occlusion model

  • Kang, Ju-Bin;Kim, Dong-Kyun;Park, Dong-Ju;Shah, Murad-Ali;Kim, Myeong-Ok;Jung, Eun-Jung;Lee, Han-Shin;Koh, Phil-Ok
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.195-202
    • /
    • 2018
  • Hyperglycemia is one of the major risk factors for stroke. Hyperglycemia can lead to a more extensive infarct volume, aggravate neuronal damage after cerebral ischemia. ${\alpha}$-Synuclein is especially abundant in neuronal tissue, where it underlies the etiopathology of several neurodegenerative diseases. This study investigated whether hyperglycemic conditions regulate the expression of ${\alpha}$-synuclein in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury. Male Sprague-Dawley rats were treated with streptozotocin (40 mg/kg) via intraperitoneal injection to induce hyperglycemic conditions. MCAO were performed four weeks after streptozotocin injection to induce focal cerebral ischemia, and cerebral cortex tissues were obtained 24 hours after MCAO. We confirmed that MCAO induced neurological functional deficits and cerebral infarction, and these changes were more extensive in diabetic animals compared to non-diabetic animals. Moreover, we identified a decrease in ${\alpha}$-synuclein after MCAO injury. Diabetic animals showed a more serious decrease in ${\alpha}$-synuclein than non-diabetic animals. Western blot and reverse-transcription PCR analyses confirmed more extensive decreases in ${\alpha}$-synuclein expression in MCAO-injured animals with diabetic condition than these of non-diabetic animals. It is accepted that ${\alpha}$-synuclein modulates neuronal cell death and exerts a neuroprotective effect. Thus, the results of this study suggest that hyperglycemic conditions cause more serious brain damage in ischemic brain injuries by decreasing ${\alpha}$-synuclein expression.