DOI QR코드

DOI QR Code

Effects of Sopung-tang on Cerebral Infarct Induced by MCAO in Hyperlipidemic Rats

소풍탕(疏風湯)이 고지혈증 흰쥐의 뇌경색에 미치는 영향

  • Choi, Seo-Woo (Department of Anatomy-Pointology, College of Oriental Medicine, Gachon University) ;
  • Kim, Youn-Sub (Department of Anatomy-Pointology, College of Oriental Medicine, Gachon University)
  • 최서우 (가천대학교 한의과대학 해부경혈학교실) ;
  • 김연섭 (가천대학교 한의과대학 해부경혈학교실)
  • Received : 2014.04.25
  • Accepted : 2014.05.20
  • Published : 2014.05.30

Abstract

Objectives : This study evaluates the neuroprotective effects of Sopung-tang, a mixture of Notopterygii Rhizoma, Saposhnikoviae Radix, Angelicae Gigantis Radix, Cnidii Rhizoma, Hoelen, Aurantii Nobilis Pericarpium, Pinelliae Tuber, Linderae Radix, Angelicae Dahuricae Radix, Cyperi Rhizoma, Cinnamomi Ramulus, Asari Radix, Glycyrrhizae Radix on the cerebral infarct combined with hyperlipidemia. Method : The hyperlipidemia was induced by the beef tallow 30% diet for 14 days on Sprague-Dawley rats. The cerebral infarct was induced by the middle cerebral artery occlusion (MCAO) for 2 hours with intraluminal thread method. Then the water extract of Sopung-tang was administered a day for 5 days at 3 hours after the cerebral infarct by MCAO. Effect of Sopung-tang was evaluated with the infarct volume and edema percentage by a TTC-stained brain section, and the expressions of Bax and Bcl-2 in the brain tissue by a immunohistochemical stain method. Results : Sopung-tang reduced the infarct size partly in a TTC-stained brain section of the hyperlipidemic MCAO rats. Sopung-tang reduced the infarct volume of the hyperlipidemic MCAO rats significantly. Sopung-tang reduced the edema percentage of the hyperlipidemic MCAO rats, but not significant statistically. Sopung-tang suppressed the Bax expressions in the cerebral penumbra and caudate putamen of the hyperlipidemic MCAO rats significantly. Sopung-tang upregulated the Bcl-2 expression in the caudate putamen of the hyperlipidemic MCAO rats. Conclusion : These results suggest that Sopung-tang plays an anti-apoptotic neuroprotective effect through the suppression of Bax and up-regulation of Bacl-2 expressions in the brain tissues.

Keywords

References

  1. Kim YS. Clinical Strok. Seoul : Seowondang. 1997 : 303-8, 317-29.
  2. Kim YS. Etiopathogy, demondtration and treatment of stroke. J Kor Ori Chr Dis. 1995 ; 1(1) : 113-40.
  3. Do KD, Jeong SH, Shin GC, Lee WC. The study on the complications of Xiaoke(消渴). J Kor Ori Int Med. 1997 ; 18(2) : 40-52.
  4. Neo HT, Kim BT. The bibligraphical study of factors including wind-stroke. J Daejeon Univ. 1997 ; 5(2) : 305-17.
  5. Pinto A, Tuttolomondo A, Di Raimondo D, Fernandez P, Licata G. Cerebrovascular risk factors and clinical classification of strokes. Semin Vasc Med. 2004 ; 4(3) : 287-303. https://doi.org/10.1055/s-2004-861497
  6. Alberts MJ, Ovbiagele B. Current strategies for ischemic stroke prevention: role of multimodal combination therapies. J Neurol. 2007 ; 254(10) : 1414-26. https://doi.org/10.1007/s00415-007-0569-9
  7. Gong ZX. Manbyeonghoichun. Seoul : Haenglimseowon. 1975 : 49.
  8. Yoon GY. Korean Prescription. Seoul : Gomunsa. 1971 : 109, 149.
  9. Kim JJ. Clinic text. 2nd vol. Seoul : Oriental medicine institute. 1974 : 210, 320.
  10. Jung CK. Effects of Sopungtang on the Cardiovascular System in the Experimental animals. Kor J Ori Physiol Pathol. 1995 ; 10 : 317-40.
  11. Moon YH, Chung MH, Jhoo HK, Lim DY, Yoo HJ. Influence of Sopung-Tang on the Blood Pressure Response of the Rat. Kor J Pharmacogn. 1990 ; 21(2) : 173-8.
  12. Jeong JG, Ahn IH. The Effect of the Sopuntang on the patients of early cerebral thrombosis. J Wonkwang Ori Med. 1995 ; 5 : 181-95.
  13. Choo MG, Choi JB, Shin MS, Kim SJ. Neuroprotective Effects of Sopung-tang(Shufeng-tang) on Cognition and Motor Function Recovery after Ischemic Brain Injury in Rats. Kor J Ori Rehab Med. 2008 ; 18(2) : 45-60.
  14. Kwon YC, Lee KS. Experimental study on the Effect of Sopoong-Tang and Kami-Sopoon-Tang to the Induced Hypercholesteremic rabbit. K H Univ O Mdd J. 1982 ; 5 : 269- 79.
  15. Nicholson DW. Mechanisms of apoptotic control. Nature. 2000 ; 407 : 810-6. https://doi.org/10.1038/35037747
  16. Welch WJ. Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells. Philos Trans R Soc Lond B Biol Sci. 1993 ; 339 : 327-33. https://doi.org/10.1098/rstb.1993.0031
  17. Zea Longa EL, Weinstein PR, Carlson S, Cummins R. Reversible middle cerebral artery occlusion without craniectomy in rats. stroke. 1989 ; 20 : 84-91. https://doi.org/10.1161/01.STR.20.1.84
  18. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR. A semiautomated method for measuring brain infarct volume. J Cereb Blod Flow Metab. 1990 ; 10(2) : 290-3. https://doi.org/10.1038/jcbfm.1990.47
  19. Durukan A, Tatlisumak T. Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav. 2007 ; 87(1) : 179-97. https://doi.org/10.1016/j.pbb.2007.04.015
  20. Laloux P, Galanti L, Jamart J. Lipids in ischemic stroke subtypes. Acta Neurol Belg. 2004 ; 104(1) : 13-9.
  21. Eastern Stroke and Coronary Heart Disease Collaborative Research Group. Blood pressure, cholesterol and stroke in Eastern Asia. Lancet. 1998 ; 352 : 1801-7. https://doi.org/10.1016/S0140-6736(98)03454-0
  22. Iso H, Jacobs DR Jr, Wentworth D, Neaton JD, Cohen JD. Serum cholesterol levels and six-year mortality from stroke in 350,977 men screened for the multiple risk factor intervention trial. N Engl J Med. 1989 ; 320(14) : 904-10. https://doi.org/10.1056/NEJM198904063201405
  23. Di Mascio R, Marchioli R, Tognoni G. Cholesterol reduction and stroke occurrence: an overview of randomised clinical trials. Cerebrovasc Dis. 2000 ; 10 : 85-92. https://doi.org/10.1159/000016035
  24. DeGraba TJ, Pettigrew LC. Why do neuroprotective drugs work in animals but not in humans?. Neurol Clin. 2000 ; 18 : 475-93. https://doi.org/10.1016/S0733-8619(05)70203-6
  25. Barone FC, Price WJ, White RF, Willette RN, Feuerstein GZ. Genetic hypertension and increased susceptibility to cerebral ischemia. Neurosci Biobehav Rev. 1992 ; 16(2) : 219-33. https://doi.org/10.1016/S0149-7634(05)80182-4
  26. Higuchi Y, Yamashita K, Taniyama K, Satake M, Ozaki M. Shichimotsu-koka-to prevents stroke and changes free-radical-related enzymes in stroke-prone spontaneously hypertensive rats (SHRSP). Nippon Yakurigaku Zasshi. 1996 ; 108(1) : 13-22.
  27. Hawkins BT, Davis TP. The Blood-Brain Barrier/Neurovascular Unit in Health and Disease. Pharmacol Rev. 2005 ; 57(2) : 173-85. https://doi.org/10.1124/pr.57.2.4
  28. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol. 2006 ; 1(3): 223-36. https://doi.org/10.1007/s11481-006-9025-3
  29. Putcha GV, Deshmukh M, Johnson EM Jr. BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, Bcl-2, and caspases. J Neurosci. 1999 ; 19 : 7476-85.
  30. Neame SJ, Rubin LL, Philpott KL. Blocking cytochrome c activity within intact neurons inhibits apoptosis. J Cell Biol. 1998 ; 142 : 1583-93. https://doi.org/10.1083/jcb.142.6.1583
  31. Gross A, McDonnell JM, Korsmeyer SJ. Blc-2 family members and the mitochondria in apoptosis. Genes Develop. 1999 ; 13 : 1899-911. https://doi.org/10.1101/gad.13.15.1899
  32. Krajewski S, Mai JK, Krajewska M, Sikorska M, Mossakowski MJ, Reed JC. Upregulation of Bax protein levels in neurons following cerebral ischemia. J Neurosci. 1995 ; 15 : 6364-76.
  33. Gibson ME, Han BH, Choi J, Knudson CM, Korsmeyer SJ, Parsadanian M, Holtzman DM. BAX contributes to apoptotic-like death following neonatal hypoxia-ischemia: evidence for distinct apoptosis pathways. Mol Med. 2001 ; 7(9) : 644-55.
  34. Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, Albertini P, Talabot D, Catsicas S, Pietra C, Huarte J. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron. 1994 ; 13(4) : 1017-30. https://doi.org/10.1016/0896-6273(94)90266-6
  35. Lindquist S. Heat-shock proteins and stress tolerance in microorganisms. Curr Opin Genet Dev. 1992 ; 2(5) : 748-55. https://doi.org/10.1016/S0959-437X(05)80135-2
  36. Bruce BD, Churchich J. Characterization of the molecular-chaperone function of the heat-shock-cognate-70-interacting protein. Eur J Biochem. 1997 ; 245 : 738-44. https://doi.org/10.1111/j.1432-1033.1997.00738.x
  37. Gebauer M, Zeiner M, Gehring U. Proteins interacting with the molecular chaperone hsp70/hsc70: physical associations and effects on refolding activity. FEBS Lett. 1997 ; 417 : 109-13. https://doi.org/10.1016/S0014-5793(97)01267-2
  38. Lowenstein DH, Chan PH, Miles MF. The stress protein response in cultured neurons: characterization and evidence for a protective role in excitotoxicity. Neuron. 1991 ; 7 : 1053-60. https://doi.org/10.1016/0896-6273(91)90349-5
  39. Khomenko IP, Bakhtina LY, Zelenina OM, Kruglov SV, Manukhina EB, Bayda LA, Malyshev IY. Role of heat shock proteins HSP70 and HSP32 in the protective effect of adaptation of cultured HT22 hippocampal cells to oxidative stress. Bull Exp Biol Med. 2007 ; 144(2) : 174-7. https://doi.org/10.1007/s10517-007-0282-9
  40. Lanneau D, Brunet M, Frisan E, Solary E, Fontenay M, Garrido C. Heat shock proteins: essential proteins for apoptosis regulation. J Cell Mol Med. 2008 ; 12(3) : 743-61. https://doi.org/10.1111/j.1582-4934.2008.00273.x