DOI QR코드

DOI QR Code

The Effect of Hirudin Herbal-acupuncture on Neurotransmitters against Middle Cerebral Artery Occulsion(MCAO) Rats

Hirudin 약침(藥鍼)이 뇌허혈(腦虛血)을 유발(誘發)시킨 흰쥐의 신경전도물질(神經傳達物質)에 미치는 영향(影響)

  • Suk, Jae-Wook (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Daegu Hanny University) ;
  • Jung, Tae-Young (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Daegu Hanny University) ;
  • Leem, Seong-Cheol (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Daegu Hanny University) ;
  • Seo, Jeong-Chul (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Daegu Hanny University) ;
  • Han, Sang-Won (Department of Acupuncture & Moxibustion, College of Oriental Medicine, Daegu Hanny University)
  • 석재욱 (대구한의대학교 한의과대학 침구학교실) ;
  • 정태영 (대구한의대학교 한의과대학 침구학교실) ;
  • 임성철 (대구한의대학교 한의과대학 침구학교실) ;
  • 서정철 (대구한의대학교 한의과대학 침구학교실) ;
  • 한상원 (대구한의대학교 한의과대학 침구학교실)
  • Published : 2004.06.25

Abstract

Objective : This experimental studies were performed in order to prove the effect of Hirudin Herbal-acupuncture by using rats that had neuronal damage due to the Middle Cerebral Artery Occulsion(MCAO). Method : We observed the change of extracellular concentrations(${\mu}M$) of dopamine, DOPAC, HVA, HIAA, glutamate, aspartate, GABA, glysine, taurine, alanine, and tyrosine as extracted by vivo microdialysis, in the Hirudin Herbal-acupuncture administrated rats($240{\sim}260g$, Sprague-Dawley) subjected to the MCAO. The dialysates were extracted three times before the MCAO and six times after the MCAO every 20 minutes, and analysed by highperformance liquid chromatography(HPLC). Results : Hirudin Herbal-acupuncture significantly inhibited glutamate, aspartate, and tyrosine which are stimulant neurotransmitters at brain ischemia, and it significantly decreased glycine, GABA, taurine, and alanine which are inhibitory neurotransmitters at brain ischemia. Conclusion : Hirudin Herbal-acupuncture may prevent delayed neuronal death(DND) in selectively vulnerable focal areas of the brain effectively.

Keywords

References

  1. Raymond D. Adams 外. 아담스 신경과학. 서울:정담. 1998 : 715-28.
  2. 金永錫. 臨皮中風學. 서울 : 書苑堂. 1997:303-4, 437
  3. 全國韓醫科大學 心系內科學敎室. 서울 : 書苑堂. 1999: 502.505-6.
  4. 沈全魚 外. 中風證治. 北京 : 中醫古籍出版社. 1988 : 1,6,8-10, 13-4.
  5. 全國韓醫科大學 本草學敎室. 本草學. 서울 : 永林社. 1991: 424-5, 431-2.
  6. 辛民敎. 原色臨床本草學. 서울 : 永林出版社.1988 : 461-2, 467-8.
  7. 백정환, 신준호, 박주현. 피판 부전증의 구제를 위한 약용거머리 치료법. 대한두경부종양학회지. 2000; 16(1) ; 20-5.
  8. 김영태, 한상원. 水蛭 및 紅花藥鍵이 Endotoxin으로 誘發된 血栓症에 미치는 影響. 大韓針灸學會誌. 1997; 14(1) ; 464-77.
  9. Paxinos G, Watson C. The rat brain in sterotaxic coordinates. 2nd de. Academic Press. New York. 1986.
  10. Hillered L, Hallstrom A, Segersvard S, Persson L. Ungerstedt U. Dynamics of extracellula metabolites in the striatum after middle cerebral artery occlusion in the rat monitored by intercerebral microdialysis. J. Cereb. Blood Flow Metab. 1989 ; 9: 607-16. https://doi.org/10.1038/jcbfm.1989.87
  11. Tossman U, Ungerstedt U. Microdialysis in the study of extracellular levels of amino acids in the rat brain. Acta. Phys. Scand. 1986 ; 128 : 9-14. https://doi.org/10.1111/j.1748-1716.1986.tb07943.x
  12. Nagasawa H. Kogure K. Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke. 1989 ; 20 : 1037-43. https://doi.org/10.1161/01.STR.20.8.1037
  13. 정월선, 박준형,심지연, 최인철, 이재원, 헤파린기인 성 혈소판감소증 환자에서 Hirudin을 사용하여 심폐우회술을 시행한 예. 대한마취과학회지.2000 : 176: 270-4.
  14. 安圭錫. 蚯蚓, 水蛭, 蠐 螬 및 蜈蚣이 血栓症에 미치는 影響. 大韓韓醫學會誌. 1990 ; 11(2) : 92-101.
  15. 박창국. 웅담 및 수질이 어혈병태모형에 미치는 영향. 동서의학. 1994; 19(2) ; 5-42.
  16. 최윤주 外. 효소면역측정법(ELISA)을 이용한 유전자 재조합 히루딘의 정량. 藥學會誌. 1997 ; 41(1) ; 74-80
  17. 조홍근, 박시훈, 신길자, 백금련, 정광회, 강석민, 이상학. 가토 경동맥 외번모델에서 히루딘(Hirudin)의 항 혈소판 응집효과. 순환기. 1999 ; 29(10) ; 1121-8.
  18. Saito M, Asakura H, Jokaji H, Uotani C, Kumabashiri I, Morishita E, Yamazaki M, Aoshima K, Matsuda T. Recombinant hirudin for the treatment of disseminated intravascular coagulation in patients with haematological malignancy. Blood Coagul Fibrinolysis. 1995 ; 6(1) : 60-4. https://doi.org/10.1097/00001721-199502000-00010
  19. 김수신. 거머리의 임상적 이용에 대한 고찰. 中央 醫學.1985; 292; 7-15.
  20. Xi G, Keep RF, Hua Y, Xiang J, Hoff JT. Attenuation of thrombin-induced brain edema by cerebral thrombin preconditioning. Stroke. 1999 ; 30(6) : 1247-55. https://doi.org/10.1161/01.STR.30.6.1247
  21. Masada T, Xi G, Hua Y, Keep RF. The effects of thrombin preconditioning on focal cerebral ischemia in rats. Brain Res. 2000; 867(1-2): 173-9. https://doi.org/10.1016/S0006-8993(00)02302-7
  22. 許仁會 外. 神經傳達物質 基礎와 臨床. 서울:신일상사. 1996 : 288, 392.
  23. Hickey RW, Akino M, Strausbaugh S, De Courtmn-Myers GM. Use of the Moms water maze and acoustic startle chamber to evaluate neurologic injury after asphxial arrest in rats. Pediatr. Res. 1996 ; 39(1) : 77-84. https://doi.org/10.1203/00006450-199601000-00011
  24. Floyd RA. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J. 1990 ; 4(9) : 2587-97.
  25. Vulto AG, Sharp T, Ungerstedt U, Versteeg DH. Rapid postmortem increase in extracellular dopamine in the rat brain as assessed by brain microdialysis. J. Neurochem. 1988 ; 51(3) : 746-9. https://doi.org/10.1111/j.1471-4159.1988.tb01808.x
  26. Matsumoto K, Graf R, Rosner G, Taguchi J, Heiss WD. Elevation of neuroactive substances in the cortex of cats during prolonged focal ischemia. J. Cereb Blood Flow Metab. 1993 ; 13(4) : 586-94. https://doi.org/10.1038/jcbfm.1993.76
  27. Maker HS, Weiss C, Brannan TS. Amine-mediated toxicity. The effects of dopamine, norepinephrine, 5-hydroxytryptamine, 6-hydroxydopamine, ascorbate, glutathione and peroxide on the in vitro activities of creatine and adenylate kinases in the brain of the rat. Neuropharmacology. 1986; 25(1) : 25-32. https://doi.org/10.1016/0028-3908(86)90054-7
  28. Damsma G, Boisvert DP, Mudrick LA, Wenkstem D, Fibiger HC. Effects of transient forebrain ischemia and pargyline on extracellular concentrations of dopamine, serotonin, and their metabolites in the rat striatum as determined by in vivo microdialysis. J. Neurochem. 1990 ; 54(3) : 801-8. https://doi.org/10.1111/j.1471-4159.1990.tb02322.x
  29. Kawano T, Tsutsumi K, Miyake H, Mori K. Striatal dopamine in acute cerebral ischemia of stroke-resistant rats. Stroke. 1988 ; 19(12) : 1540-3 https://doi.org/10.1161/01.STR.19.12.1540
  30. Weinberger J, Nieves-Rosa J. Metabolism of monoamine neurotransmitters in the evolution of infarction in ischemic striatum. J. Neural Transm. 1987 ; 69(3-4): 265-75. https://doi.org/10.1007/BF01244347
  31. 서유헌. 신경전달물질. 2. 서울 : 민음사. 1996: 22-3, 272, 302, 314.
  32. Benveniste H, Drejer J. Schoousboe A. Elevation of extracellular oncentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J. Neurochem.1984; 43: 1369-74. https://doi.org/10.1111/j.1471-4159.1984.tb05396.x
  33. MacDermott AB, Mayer ML, Wessbrook GL. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature. 1986; 321 : 519-21. https://doi.org/10.1038/321519a0
  34. Leach MJ, Swan JH, Eisenthal D, Dopson M, Nobbs M, A glutamate release inhibitor, protects against focal cerebral ischemic damage. Stroke. 1993 ; 24: 1063-7. https://doi.org/10.1161/01.STR.24.7.1063
  35. Globus MY, Busto R, Martinez E, Valdes I, Dietrich WD, Ginsberg MD. Comparative effect of transient global ischemia on extracellular level of glutamate, glycine, and gamma-aminobutyric acid in vulnerable and non vulnerable brain regions in the rat. J. Neurochem. 1991 ; 57(2) : 470-8.77. https://doi.org/10.1111/j.1471-4159.1991.tb03775.x
  36. Stemau LL, Lust WD, Ricci AJ, Role for GABA in selective vulnerability in gerbils, Stroke, 1989 ; 20 : 281-7. https://doi.org/10.1161/01.STR.20.2.281
  37. Tsuchida E, Bullock R. The effect of the glycine site- specific NMDA antagonist ACEA1021 on ischemic brain damage caused by acute subdural hematoma in the rat. J. Neurotrauma. 1995 ; 12(3) : 279-88. https://doi.org/10.1089/neu.1995.12.279
  38. Hagberg H, Andersson P, Kjellmer I, Thiringer K, Thordstein M. Extracellular overflow of glutamate, aspartate, GABA and taurine in the cortex and basal ganglia of fetal lambs during hypoxia -ischemia. Neurosci Lett.1987; 78(3): 311-7. https://doi.org/10.1016/0304-3940(87)90379-X
  39. Stummer W, Betz AL, Shakui P, Keep RF. Blood-brain barrier taurine transport during osmotic stress and in focal cerebral ischemia. J. Cereb Blood Flow Metab. 1995; 15(5) : 852-9. https://doi.org/10.1038/jcbfm.1995.106
  40. Paulsen RE, Fonnun F. Role of glial cells for the basal and $Ca^{2+}$-depeudent $K^{+}$-evoked release of transmitter amino acids investigated by microdialysis. J. Neurochem. 1989; 52 : 1823-9. https://doi.org/10.1111/j.1471-4159.1989.tb07263.x
  41. Salvati P, Ukmar G, Dho L, Rosa B, Cini M, Marconi M, Molinari A, Post C. Brain concentrations of kynurenic acid after a systemic neuroprotective dose in the gerbil model of global ischemia. Prog Neuropsychopharmacol Biol Psychiatry. 1999 ; 23(4) : 741-52. https://doi.org/10.1016/S0278-5846(99)00032-9
  42. Cozzi A, Carpenedo R, Moroni F. Kynurenine hydroxylase inhibitors reduce ischemic brain damage. J. Cereb Blood Flow Metab. 1999 ; 19(7) : 771-7.
  43. Yokota M, Sado TC, Miyaji K, Kawashima S, Suzuki K. Stimulation of protein-tyrosine phosphorylation in berbil hippocampus after global forebrain ischemia. Neurosci Lett. 1994; 168: 62-72.