• 제목/요약/키워드: MC3T3 cell

검색결과 198건 처리시간 0.03초

Capillary Flow in Different Cells of Thuja orientalis, Gmelina arborea, Phellodendron amurense

  • Chun, Su Kyoung
    • 한국가구학회지
    • /
    • 제28권3호
    • /
    • pp.248-258
    • /
    • 2017
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood Thuja orientalis L., diffuse-porous wood Gmelina arborea Roxb., and ring-porous wood Phellodendron amurense Rupr., Longitudinal flow was considered from bottom to top while the radial flow was considered from bark to pith directions. In radial direction, ray cells and in longitudinal direction tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents(MC). The variation of penetration speed for different species was observed and the reasons behind for this variation were explored. The highest radial penetration depth was found in ray parenchyma of T. orientalis but the lowest one was found in ray parenchyma of P. amurense. The average liquid penetration depth in longitudinal trachied of T. orientalis was found the highest among all the other cells. The penetration depth in fiber of G. arborea was found the lowest among the other longitudinal cells. It was found that cell dimension and also meniscus angle of safranine solution with cell walls were the prime factors for the variation of liquid flow speed in wood. Vessel was found to facilitate prime role in longitudinal penetration for hardwood species. The penetration depth in vessel of G. arborea was found highest among all vessels. Anatomical features like ray parenchyma cell length and diameter, end-wall pits number were found also responsible fluid flow differences. Initially liquid penetration speed was high and the nit gradually decreased in an uneven rate. Liquid flow was captured via video and the penetration depths in those cells were measured. It was found that even in presence of abundant rays in hardwood species, penetration depth of liquid in radial direction of softwood species was found high. Herein the ray length, lumen area, end wall pit diameter determined the radial permeability. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Following a go-stop-go cycle, the penetration speed of a liquid decreased over time.

임플랜트에 연결한 영구자석의 자력이 뼈의 세포외 기질 생성에 미치는 영향에 관한 실험실적 연구 (THE EFFECT OF PERMANENT MAGNET CONNECTING WITH DENTAL IMPLANT ON BONE EXTRACELLULAR MATRIX FORMATION)

  • 원인재;백진;권긍록;이성복
    • 대한치과보철학회지
    • /
    • 제44권5호
    • /
    • pp.574-583
    • /
    • 2006
  • Statement of problem : The use of permanent magnetics is increasing in implant dentistry. Purpose : This study is to know the effect of permanent magnetics on bone matrix formation of osteoblasts. Materials and methods : The konus abutment-shaped permanent magnetics were connected to the implant fixture, and placed on the culture plate. The osteoblast-like cell Mc3T3E1 were used for cell culture. As the control group, the implants were connected to titanium healing caps, and cultured in the same conditions of experimental group. After 3. 7, 14 days, cells were cultured, and we measured and compared the amount of collagen type I, osteocalcin, which is bone matrix protein by Western immunoblotting analysis. Results: As a result of Western immunoblotting analysis for estimating the amount of bone extracellular matrix, there was no difference between osteoblast of the experimental group and the control group during 3 and 7day-osteoblast culturing. However when cells were cultured for 14days, the amount of bone extracellular matrix was increased, on the experimental group. Conclusion: From these results, magnetic field of permanent magnetics might have effect on bone formation of osteoblast, especially at initial stage of implant placement. Therefore, their clinical application for implant or bone graft could be possible.

Yam (Dioscorea batatas) Root and Bark Extracts Stimulate Osteoblast Mineralization by Increasing Ca and P Accumulation and Alkaline Phosphatase Activity

  • Kim, Suji;Shin, Mee-Young;Son, Kun-Ho;Sohn, Ho-Yong;Lim, Jae-Hwan;Lee, Jong-Hwa;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • 제19권3호
    • /
    • pp.194-203
    • /
    • 2014
  • Yam (Dioscorea batatas) is widely consumed as functional food for health promotion mainly in East Asia countries. We assessed whether yam root (tuber) or bark (peel) extracts stimulated the activity of osteoblasts for osteogenesis. MC3T3-E1 cells (mouse osteoblasts) were treated with yam root extracts (water or methanol) (study I) or bark extracts (water or hexane) (study II) within $0{\sim}10{\mu}g/mL$ during the periods of osteoblast proliferation (5~10 day), matrix maturation (11~15 day) and mineralization (16~20 day) as appropriate. In study I, both yam root water and methanol extracts increased cell proliferation as concentration-dependent manner. Cellular collagen synthesis and alkaline phosphatase (ALP) activity, both the indicators of bone matrix protein and inorganic phosphate production for calcification respectively, were also increased by yam root water and methanol extract. Osteoblast calcification as cell matrix Ca and P accumulation was also increased by the addition of yam root extracts. In study II, yam bark extracts (water and hexane) increased osteoblast proliferation and differentiation, as collagen synthesis and ALP activity and osteoblast matrix Ca and P deposition. The study results suggested that both yam root and bark extracts stimulate osteogenic function in osteoblasts by stimulating bone matrix maturation by increasing collagen synthesis, ALP activity, and matrix mineralization.

Safety evaluation of atmospheric pressure plasma jets in in vitro and in vivo experiments

  • Lee, Ji-Yoon;Park, Shin-Young;Kim, Kyoung-Hwa;Yoon, Sung-Young;Kim, Gon-Ho;Lee, Yong-Moo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • 제51권3호
    • /
    • pp.213-223
    • /
    • 2021
  • Purpose: The atmospheric pressure plasma jet (APPJ) has been introduced as an effective disinfection method for titanium surfaces due to their massive radical generation at low temperatures. Helium (He) has been widely applied as a discharge gas in APPJ due to its bactericidal effects and was proven to be effective in our previous study. This study aimed to evaluate the safety and effects of He-APPJ application at both the cell and tissue levels. Methods: Cellular-level responses were examined using human gingival fibroblasts and osteoblasts (MC3T3-E1 cells). He-APPJ was administered to the cells in the experimental group, while the control group received only He-gas treatment. Immediate cell responses and recovery after He-APPJ treatment were examined in both cell groups. The effect of He-APPJ on osteogenic differentiation was evaluated via an alkaline phosphatase activity assay. In vivo, He-APPJ treatment was administered to rat calvarial bone and the adjacent periosteum, and samples were harvested for histological examination. Results: He-APPJ treatment for 5 minutes induced irreversible effects in both human gingival fibroblasts and osteoblasts in vitro. Immediate cell detachment of human gingival fibroblasts and osteoblasts was shown regardless of treatment time. However, the detached areas in the groups treated for 1 or 3 minutes were completely repopulated within 7 days. Alkaline phosphatase activity was not influenced by 1 or 3 minutes of plasma treatment, but was significantly lower in the 5 minute-treated group (P=0.002). In vivo, He-APPJ treatment was administered to rat calvaria and periosteum for 1 or 3 minutes. No pathogenic changes occurred at 7 days after He-APPJ treatment in the He-APPJ-treated group compared to the control group (He gas only). Conclusions: Direct He-APPJ treatment for up to 3 minutes showed no harmful effects at either the cell or tissue level.

아보카도 과육, 과피 및 씨 추출물이 조골세포 분화 및 파골세포 형성에 미치는 영향 (Effects of Extracts from Sarcocarp, Peels, and Seeds of Avocado on Osteoblast Differentiation and Osteoclast Formation)

  • 김미진;임남경;유미희;김현정;이인선
    • 한국식품영양과학회지
    • /
    • 제40권7호
    • /
    • pp.919-927
    • /
    • 2011
  • 본 연구에서는 아보카도가 골 형성에 미치는 영향을 검토하고자 아보카도 과육, 과피 및 씨로 나누어 각각 메탄올 추출물을 제조하여 osteoblastic MC3T3-E1 cells을 이용한 골 형성능과 마우스 골수 세포로부터 유래된 파골세포를 이용한 골 흡수능을 측정하였다. 아보카도 과육 추출물을 제외한 과피 및 씨 추출물은 조골세포의 증식 및 ALP 활성을 증가시켰으며, 파골세포에 대해서는 아보카도 과육 및 과피추출물에서 세포독성 없이 TRAP 활성을 억제하는 것을 확인하였다. 또한 아보카도 과피의 핵산 분획은 조골세포의 증식 및 ALP 활성을 크게 증가시켰으며, 아보카도 과피 에틸아세테이트 분획은 파골세포의 분화지표인 TRAP 활성을 크게 억제하였다. 따라서 아보카도 과피는 조골세포의 증식과 파골세포의 억제에 관여할 수 있는 우수한 소재로 향후 골다공증의 치료제로서의 개발 가능성을 가진 천연물 소재로 생각된다.

마이크로컴퓨터 시스템을 이용한 표고버섯의 감압건조에 대한 연구 (Design and Evaluation of a Microcomputer-based Vacuum Drying System for Shiitake Mushrooms)

  • 최재용;김공환;전재근
    • 한국식품과학회지
    • /
    • 제19권6호
    • /
    • pp.550-555
    • /
    • 1987
  • 건조실내의 압력과 건조시료의 수분감소량을 측정하기 위해 부르돈관과 하중변환기 표면에 strain gauge를 부착시켜 감응장치로 이용하였다. 이 감응장치를 Bear II 마이크로컴퓨터에 접속시켜 마이크로컴퓨터 감압건조시스템을 구성하였다. 접속장치로는 MC 6821, ADC 0809, SN 74244, SN 7474 등의 IC 칩이 사용되었다. 컴퓨터의 디지탈출력값(D)과 감압건조실내의 압력(P)과의 관계는 P=3.0800D-13.4875(r=0.9999)로 나타났고 시료무게 (W)와의 관계는 W=0.4076D-6.4762(r=0.9999)이었다. 표고버섯은 감압건조하는 동안 마이크로컴퓨터시스템을 이용하여 얻은 압력과 무게측정값의 자료로부터 표고버섯의 감압건조곡선을 얻었다. 이 결과 표고버섯의 감압건조에서는 온도나 시료의 형태가 건조속도에 그다지 큰 영향을 미치지 못했고 감압건조실내의 압력이 더 큰 영향을 미쳤다. 감압건조하에서 표고버섯내의 수분이동은 Page model을 따랐으며 그 관계식은 $50^{\circ}C$에서 건조된 원형 표고버섯의 경우 400mmHg에서 건조를 시작한 후 14시간 정도까지는 $(M-M_e)/(M_o-M_e)=\exp(-0.1569t^{1.0048})$로, 600mmHg에서 8시간정도까지는 $(M-M_e)/(M_o-M_e)=\exp(-0.1385_t^{1.2688})$이었다.

  • PDF

치과용 임플란트 적용 비귀금속 코어와 관련된 전조골세포의 변화 (Changes in pre-osteoblast cells associated with non-precious metal cores with dental implants: Pilot test)

  • 박정현;강신영;김종우;김장주;김웅철;김지환
    • 대한치과기공학회지
    • /
    • 제40권2호
    • /
    • pp.63-69
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the non-precious metal core materials used in the dental laboratory to fabricate the implant superstructure by CAD / CAM method. And to observe and compare the morphology and distribution of the osteoblasts in relation to implant osseointegration. Methods: In this study, the mandibular right first molar tooth model was selected as an international standard to produce a single core. Using this model, the impression was made with the silicone rubber, the tooth model was scanned, and a single core was designed and 5-axis milling was performed. The materials used were Cobalt-Chromium and Nickel-Chromium, and the cores for dental implant top structures were fabricated according to the procedures of the dental labs. After the fabrication, the marginal area of the core was separated and cell culture experiment was performed. The osteoblast cells used MC3T3-E1, which is currently widely used. For morphological analysis of osteoblasts, cells were posttreated and observed using CLSM (Confocal Laser Scanning Microscope) and compared. Results: The cell adhesion behavior of the specimen surface measured by CLSM was uniformly distributed in specimen A (Cobalt-Chromium) than in specimen B (Nickel-Chromium). The distribution and changes of the cells were different in the two specimens. Conclusion : It is possible to confirm that specimen A (Cobalt-Chromium) is suitable for the living body through adhesion and proliferation of osteoblasts related to implant osseointegration in the non-precious metal superstructure used after implantation. It is considered that it is preferable to use Co-Cr when fabricating the superstructure.

조골세포에서 pleiotrophin(PTN)의 발현에 대한 연구 (PLEIOTROPHIN (PTN) EXPRESSION IN OSTEOBLASTIC CELLS)

  • 김병렬;임재석;권종진;장현석;이의석;전상호;김영진
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권6호
    • /
    • pp.494-498
    • /
    • 2007
  • Pleiotrophin or osteoblast-specific factor 1(HOSF-1) is a growth-associated protein present in bone matrix. This study was designed to study pleiotrophin expression in osteoblastic cells. Pleiotrophin was expressed by osteoblast-like cell line. Pleiotrophin expression increased following the proliferative phase and was minimal at the terminal phases of the induced differentiation of cultured MC3T3-E1 cells. Pleiotrophin expression represents another autocrine factor that may contribute to the physiologic control of induced bone formation. In this study, induced osteogenesis will be examined in the context of the osteoblast expression of and regulation by PTN. I hypothesized that PDGF-BB stimulation of PTN expression represents an important paracrine signal during the induced osteogenesis associated with periodontal and implant surgeries. The possible mediation by PTN of anabolic effects attributed to PDGF-BB stimulation was examined in cell culture models of osteoblast differentiation. These studies will contribute fundamental insights to osteoblast biology and insights regarding the potential use of factors such as PTN in the clinical environment.

우슬과 인삼 열수추출 혼합물의 파골세포와 조골세포 분화 효과 (Effects of the Hot Water Extract Mixtures from Achyranthes bidentata Blume and Panax ginseng on Osteoclast and Osteoblast Differentiation)

  • 김진성;이상원;김영옥;방만석;오충훈;김철태
    • 한국약용작물학회지
    • /
    • 제23권2호
    • /
    • pp.117-124
    • /
    • 2015
  • Osteoporosis induces a bone mineral density loss due to imbalance of bone homeostasis that is achieved by osteoclasts (which are involved in bone resorption) and osteoblasts (which are involved in bone formation). Thus, this study was performed to evaluate the effects of hot water extract of the Achyranthes bidentata Blume (ABB) and Panax ginseng (Gin) on osteoclast and osteoblast differentiation. In this study, there was no cytotoxicity by ABB, 50 and $100{\mu}g/ml$ of Gin significantly decreased cell viability of RANKL-induced osteoclast in RAW264.7 cell (p < 0.01). But, it was $50{\mu}g/ml$ of ABB and Gin mixtures increased due to protective action of ABB. Furthermore, Gin contained groups (Gin, ABB and Gin mixtures) were inhibitory effects on osteoclast differentiation and bone resorption, and increased in osteoblast differentiation activity. Gin clearly inhibited RANKL-induced osteoclast differentiation by decreased calcitonin and TRAP (p < 0.01). Also, these extracts significantly increased calcium accumulation formation of osteoblastic differentiation reagents-induced osteoblast in MC3T3-E1 cell (p < 0.05). These results suggest that ABB and Gin mixtures may be a potential as drug for the treatment of osteoporosis.

Synthesis and characterization of silk fibroin-bioactive glass hybrid xerogels

  • Wu, Xiaohong;Yan, Fuhua;Liu, Wei;Zhan, Hongbing;Yang, Wenrong
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제1권2호
    • /
    • pp.63-71
    • /
    • 2014
  • This study aimed to develop a novel bioactive hybrid xerogel consisting of silk fibroin /$SiO_2-CaO-P_2O_5$ by sol-gel process at room temperature. Scanning electron microscopy (SEM), FT-IR Spectroscopy, pore measurement, mechanical property testing, in vitro bioactivity test and cytotoxicity assay were performed to characterize the xerogel for bone tissue engineering application. We have found that the xerogel possessed excellent pore structures and mechanical property. Once immersed in a simulated fluid (SBF), the xerogel exhibited profound bioactivity by inducing hydroxyapatite layers on its surfaces. The cell toxicity study also demonstrated that there was little toxic to MC3T3-E1 cells. These results indicate that silk fibroin /$SiO_2-CaO-P_2O_5$ hybrid xerogel potentially could be used as a bone tissue engineering material.