• Title/Summary/Keyword: MC/9 비만세포

Search Result 6, Processing Time 0.023 seconds

Suppressive effects of Th2 cytokines expression and the signal transduction mechanism in MC/9 mast cells by flavonol derived from Ginkgo biloba leaves (비만세포에서 은행잎 플라보놀에 의한 Th2 Cytokine 발현 및 신호전달 억제 기전 효과)

  • Kwon, Hae-Young;Chung, Kyu-Jin;Cheong, Kwang-Jo
    • Journal of Digital Convergence
    • /
    • v.13 no.8
    • /
    • pp.503-514
    • /
    • 2015
  • The effects of Flavonol contents from Ginkgo biloba leaf on anti-atopy activity have not rarely been verified. This study is to investigate the effects of flavonol on Th2 cytokine production in MC/9 mast cells. For this, flavonol was analyzed by ELISA and Real-time PCR. Analysis results showed that flavonol significantly suppressed production of Th2 cytokines(IL-13, MIP-1a) in a dose dependent manner. The mRNA expression of IL-4, IL-5, IL-13, TNF-a were effectively restrained by Flavonol at the concentration 25,50,$100{\mu}g/m{\ell}$. And decrease of expression of NFAT-1, c-jun protein was confirmed by western blot analysis. These results indicate that flavonol has effects of decreasing the Th2 cytokine production in the MC/9 mast cell causing inhibition of transcription factors such as NFAT-1, c-jun. Thus, we would like to brief that flavonol may have the applicability as therapeutic agent for atopic dermatitis.

Alternative Isoforms of the mi Transcription Factor (MITF) Regulate the Expression of mMCP-6 in the Connective Tissue-Type Mast Cells Cultured with Stem Cell Factor (SCF에서 배양한 결합조직형 비만세포에서 mMCP-6 발현을 조절하는 MITF 이형체)

  • Lee, Sun-Hee;Guan, Xiu-Ying;Kim, Dae-Ki
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1348-1354
    • /
    • 2008
  • mi transcription factor (MITF) is important in regulating the differentiation of mast cells. In particular, MITF regulates the transcription of the mouse mast cell-specific serine protease (mMCP)-6 gene, which is generally expressed by the connective tissue-type of mast cells. In this study, we investigated alternative isoforms of MITF that regulate transcription of the mMCP-6 gene in bone marrow-derived cultured mast cells in mice. The expression of MITF isoforms was examined by RT-PCR. We observed that MITF-A, -E, -H and -Mc were expressed by mucosal-type mast cells cultured in the presence of IL-3, whereas the connective tissue-type mast cells cultured in the presence of stem cell factor (SCF) expressed MITF-A. Overexpression of MITF isoforms increased luciferase activity through the mMCP-6 promoter in NIH-3T3 cells and elevated the level of mMCP-6 expression in the MC/9 mast cell line. Moreover, mMCP-6 expression in mast cells was significantly inhibited by the depletion of MITF. The transcriptional activity and DNA binding of MITF-A was comparable to that of MITF isoforms, including MITF-E, -H, and -Mc. Our results therefore suggest that MITF-A may be an important isoform of MITF in regulating the transcription of mMCP-6 in mouse connective tissue mast cells.

Suppressive effects of Morus alba Linne Root Bark (MRAL) on activation of MC/9 mast cells (상백피에 의한 MC/9 비만세포의 활성 억제 조절 연구)

  • Lee, Ki Jeon;Kim, Bok Kyu;Kil, Ki Jung
    • The Korea Journal of Herbology
    • /
    • v.28 no.1
    • /
    • pp.33-42
    • /
    • 2013
  • Objective : Morus alba Linne Root Bark (MRAL) is a medicinal herb in Korean Medicine, known for its anti-inflammatory and anti-allergic properties. However, its mechanisms of action and the cellular targets have not yet been found and the study was developed to investigate the allergic suppressive effect of MRAL. The purpose of this study is to investigate the allergic suppressive effects of MRAL on activation of MC/9 mast cells. Methods : Cytotoxic activity of MRAL (50, 100, 200, 400 ${\mu}g/mL$) on MC/9 mast cells measured using EZ-Cytox cell viability assay kit (WST reagent). The levels of interleukin-5 (IL-5), IL-13 and IL-4, IL-5, IL-6, IL-13 mRNA expression were measured by enzyme-linked immunosorbent assay (ELISA) and real-time PCR respectively. The expression of transcription factors such as GATA-1, GATA-2, NFAT, AP-1 and NF-${\kappa}B$ p65 DNA binding activity were measured by western blot and electrophoresis mobility shift assay (EMSA). Results : Our results indicated that MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) significantly inhibited PMA/Ionomycin-induced production of IL-5 and IL-13 and the expression of IL-4, IL-5, IL-6 and IL-13 mRNA in MC/9 mast cells. Moreover, MRAL (50 ${\mu}g/mL$, 100 ${\mu}g/mL$) inhibited PMA/Ionomycin-induced GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos protein expression and NF-${\kappa}B$ p65 DNA binding activity in MC/9 mast cells. Conclusions : In conclusion, we suspect the anti-allergenic activities of MRAL, may be related to the regulation of transcription factors GATA-1, GATA-2, NFAT-1, NFAT-2, c-Fos and NF-${\kappa}B$ p65 DNA binding assay causing inhibition of Th2 cytokines IL-5 and IL-13 in mast cells.

The Suppressive Effect on Th2 Cytokines Expression and the Signal Transduction Mechanism in MC/9 Mast Cells by PRAL (MC/9 비만세포에서 행인(杏仁) 추출물의 Th2 cytokine 발현 억제 효과 및 신호전달 기전 연구)

  • Kang, Ki Yeon;Han, Jae Kyung;Kim, Yun Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.28 no.2
    • /
    • pp.23-39
    • /
    • 2014
  • Objectives PRAL (Prunus armniaca Linne Var) is a herbal formula in Oriental Medicine, known for its anti-inflammatory and anti-allergenic properties. However, its mechanism of action and the cellular targets have not yet been found enough. The purpose of this study is to investigate the effects of PRAL on Th2 cytokines expression in MC/9 mast cells. Methods The effect of PRAL was analyzed by ELISA, Real-time PCR, Western blot in MC/9 mast cells. mRNA levels of GM-CSF, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ were analyzed with Real-time PCR. Levels of IL-13, MIP-$1{\alpha}$ were measured using enzyme-linked immunosorbent assays (ELISA). NFAT, AP-1 and NF-${\kappa}B$ p65 were examined by Western blot analysis. Results PRAL inhibited GM-CSF, IL-4, IL-5, IL-6, IL-13, TNF-${\alpha}$ mRNA expression in a dose dependent manner. GM-CSF, IL-4, IL-5 mRNA expression were inhibited significantly in comparison to DNP-IgE control group at concentration of 100 ${\mu}g/ml$ and IL-6, IL-13, TNF-${\alpha}$ mRNA expression were inhibited at concentration of 50 ${\mu}g/ml$, 100 ${\mu}g/ml$. PRAL also inhibited the IL-13, MIP-$1{\alpha}$ production significantly in comparison to DNP-IgE control group in a dose dependent manner. IL-13 production was inhibited at a concentration of 200 ${\mu}g/ml$, 400 ${\mu}g/ml$ and MIP-$1{\alpha}$ was inhibited at a concentration of 100 ${\mu}g/ml$, 200 ${\mu}g/ml$, 400 ${\mu}g/ml$. Western blot analysis of transcription factors involving Th2 cytokines expression revealed prominent decrease of the mast cell specific transcription factors including NFAT-1, c-Jun as well as NF-${\kappa}B$ p65 but not NFAT-2 and c-Fos. Conclusion These results indicate that PRAL has the effect of suppressing Th2 cytokines production in the MC/9 mast cells. These data represent that PRAL potentiates therapeutic activities to the allergic disease by regulating Th2 cytokines in the MC/9 mast cells.

The Suppressive Effect of Th2 Cytokines Expression and the Signal Transduction Mechanism in MC/9 Mast Cells by Forsythiae Fructus Extracts (비만세포에서 연교(連翹) 추출물의 Th2 사이토카인 발현 및 신호전달 기전 억제 효과)

  • Lee, Jin Hwa;Han, Jae Kyung;Kim, Yun Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.31-46
    • /
    • 2014
  • Objectives Forsythiae Fructus treatment has been used for inflammatory and allergic diseases in Korean Medicine. Nevertheless, the mechanism of action and the cellular targets are not understood well. The pathogenesis of allergic diseases are associated with Th2 cytokines such as IL-13, MIP-$1{\alpha}$, IL-13, IL-5, GM-CSF, IL-4, TNF-${\alpha}$ and IL-6, which are secreted by the mast cells. This study was conducted to investigate the effects of Forsythiae Fructus extracts (FF) on Th2 cytokines expression and signal transduction in MC/9 mast cells. Methods In the study, MC/9 mast cells were stimulated with DNP-IgE for 24 hours and then treated separately with CsA $10{\mu}g/m{\ell}$ and varying doses of FF for one hour. MC/9 mast cells stimulated with DNP-IgE was the control group, a treatment with CsA was the positive control group and a treatment with varying doses FF was the experimental groups. The mRNA levels of IL-13, IL-5, GM-CSF, IL-4, TNF-${\alpha}$, IL-6 were analyzed with Real-time PCR. The levels of IL-13, MIP-$1{\alpha}$ were measured using enzyme-linked immunosorbent assays(ELISA). NFAT, AP-1 and NF-${\kappa}B$ p65 were examined by Western blot analysis. Results 1. FF were observed to suppress the mRNA expression of IL-13, IL-5, GM-CSF, IL-4, TNF-${\alpha}$, IL-6 in comparison to DNP-IgE control group. 2. FF also has inhibited the IL-13, MIP-$1{\alpha}$ production significantly in comparison to DNP-IgE control group. 3. Western blot analysis of transduction factors involving Th2 cytokines expression has revealed a prominent decrease of the mast cell specific transduction factors including NFAT-1, NFAT-2, c-Jun, and NF-${\kappa}B$ p65 but c-Fos. Conclusions In conclusion, the anti-allergenic activities of FF may be strongly related to the regulation of transcription factors NFAT-1, NFAT-2, c-Jun, and NF-${\kappa}B$ p65 causing inhibition of Th2 cytokines in mast cells.

Anti-Inflammatory and Anti-allergic Effects of Gnaphalium affine Extract (떡쑥 추출물의 항염증 및 항알러지 효과)

  • Roh, Kyung-Baeg;Lee, Jung-A;Park, Junho;Jung, Kwangseon;Jung, Eunsun;Park, Deokhoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.103-114
    • /
    • 2017
  • Gnaphalium affine D. DON (GA) has been used as a vegetable as well as a folk medicine in East Asia. The antioxidant and anti-complementary activity of GA extract (GAE) has also been reported. However, little is known about its anti-inflammatory and anti-allergic effect and mechanism of action. In this study, we evaluated the inhibitory effects of GAE on the production of inflammatory mediators such as NO, $PGE_2$, TLR4, eotaxin-1 and histamine. Our results suggest that GAE inhibits the production of NO and $PGE_2$ by inhibiting transcriptional activation via the involvement of iNOS and COX-2. The LPS-induced expression of Toll-like receptor 4 (TLR4) was also attenuated. In addition, GAE inhibited A23187-induced histamine release from MC/9 mast cells. It also inhibited the production of eotaxin-1 induced by IL-4. Collectively, these results suggest that GAE may have considerable potential as a cosmetic ingredient with anti-inflammatory and anti-allergic properties.