• 제목/요약/키워드: MAVS

검색결과 21건 처리시간 0.034초

Delay Tolerant Packet Forwarding Algorithm Based on Location Estimation for Micro Aerial Vehicle Networks

  • Li, Shiji;Hu, Guyu;Ding, Youwei;Zhou, Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1377-1399
    • /
    • 2020
  • In search and rescue mission, micro aerial vehicles (MAVs) are typically used to capture image and video from an aerial perspective and transfer the data to the ground station. Because of the power limitation, a cluster of MAVs are required for a large search area, hence an ad-hoc wireless network must be maintained to transfer data more conveniently and fast. However, the unstable link and the intermittent connectivity between the MAVs caused by MAVs' movement may challenge the packet forwarding. This paper proposes a delay tolerant packet forwarding algorithm based on location estimation for MAV networks, called DTNest algorithm. In the algorithm, ferrying MAVs are used to transmit data between MAVs and the ground station, and the locations of both searching MAVs and ferrying MAVs are estimated to compute the distances between the MAVs and destination. The MAV that is closest to the destination is selected greedy to forward packet. If a MAV cannot find the next hop MAV using the greedy strategy, the packets will be stored and re-forwarded once again in the next time slot. The experiment results show that the proposed DTNest algorithm outperforms the typical DTNgeo algorithm in terms of packet delivery ratio and average routing hops.

Regulation of MDA5-MAVS Antiviral Signaling Axis by TRIM25 through TRAF6-Mediated NF-κB Activation

  • Lee, Na-Rae;Kim, Hye-In;Choi, Myung-Soo;Yi, Chae-Min;Inn, Kyung-Soo
    • Molecules and Cells
    • /
    • 제38권9호
    • /
    • pp.759-764
    • /
    • 2015
  • Tripartite motif protein 25 (TRIM25), mediates K63-linked polyubiquitination of Retinoic acid inducible gene I (RIG-I) that is crucial for downstream antiviral interferon signaling. Here, we demonstrate that TRIM25 is required for melanoma differentiation-associated gene 5 (MDA5) and MAVS mediated activation of NF-${\kappa}B$ and interferon production. TRIM25 is required for the full activation of NF-${\kappa}B$ at the downstream of MAVS, while it is not involved in IRF3 nuclear translocation. Mechanical studies showed that TRIM25 is involved in TRAF6-mediated NF-${\kappa}B$ activation. These collectively indicate that TRIM25 plays an additional role in RIG-I/MDA5 signaling other than RIG-I ubiquitination via activation of NF-${\kappa}B$.

Increasing Flight Endurance of MAVs using Multiple Quantum Well Solar Cells

  • Hassanalian, Mostafa;Radmanesh, Mohammadreza;Sedaghat, Ahmad
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.212-217
    • /
    • 2014
  • Micro Aerial Vehicles (MAVs) are useful devices to assess new features that may be utilized in a full size aircraft to enhance performance or to increase endurance. In this article, sources for energy saving in the micro air vehicles are initially addressed. Then, by specifying the important parameters on energy consumption of an aircraft, a feasibility study is conducted to assess the benefit of using solar cells to increase flight endurance. Next, a new solar cell has been designed and optimized for MAVs. This cell consists of a multiple quantum wells for which the quantum factor and the absorption coefficient are calculated by solving the Shrodinger equation using MATLAB software. Then, the manner and influence of MAVs parameters using the solar cells are examined to suggest optimal planform for different purposes. In order to increase flight endurance, it is noted that by using appropriate planform and the optimized solar cells, flight endurance can be increased by more than 30 percent.

Dengue Virus 2 NS2B Targets MAVS and IKKε to Evade the Antiviral Innate Immune Response

  • Ying Nie;Dongqing Deng;Lumin Mou;Qizhou Long;Jinzhi Chen;Jiahong Wu
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권5호
    • /
    • pp.600-606
    • /
    • 2023
  • Dengue virus (DENV) is a widespread arbovirus. To efficiently establish infection, DENV evolves multiple strategies to hijack the host innate immune response. Herein, we examined the inhibitory effects of DENV serotype 2 (DENV2) nonstructural proteins on RIG-I-directed antiviral immune response. We found that DENV2 NS2A, NS2B, NS4A, and NS4B significantly inhibited RIG-I-mediated IFN-β promoter activation. The roles of NS2B in RIG-I-directed antiviral immune response are unknown. Our study further showed that NS2B could dose-dependently suppress RIG-I/MAVS-induced activation of IFN-β promoter. Consistently, NS2B significantly decreased RIG-I- and MAVS-induced transcription of IFNB1, ISG15, and ISG56. Mechanistically, NS2B was found to interact with MAVS and IKKε to impair RIG-I-directed antiviral response. Our findings demonstrated a previously uncharacterized function of NS2B in RIG-I-mediated antiviral response, making it a promising drug target for anti-DENV treatments.

편대 유도 법칙 및 초소형 비행체의 자동 편대 비행 구현 (Leader - Follower based Formation Guidance Law and Autonomous Formation Flight Test of Multiple MAVs)

  • 유동일;심현철
    • 한국항공우주학회지
    • /
    • 제39권2호
    • /
    • pp.121-127
    • /
    • 2011
  • 본 논문에서는 초소형 비행체의 자동 편대 비행을 위한 유도 법칙과 비행 시험 결과를 기술하였다. 초소형 비행체는 탑재 중량과 비행시간 등의 제한으로 인해 짧은 시간 안에 복수의 비행체가 임무를 분담하거나 협력하여 동시에 수행하는 것이 효율적이며 편대 비행은 이러한 임무 하중을 효과적으로 감소시킬 수 있다. 제안된 편대 유도 법칙은 Leader-Follower 편대 비행의 기하학적 관계 기반으로 비선형 모델 역변환 기법을 이용하여 설계하였다. 편대 유도 법칙에 필요한 비행체의 상태 정보는 비행체 간 고속의 데이터 통신 시스템을 구성하고 지상국을 통해 송수신하도록 하였다. 본 연구에서 제안된 비행체간 통신 기반의 편대 유도 기법은 센서의 측정 잡음에 대한 강건한 성능을 확인하기 위해 실제 비행 데이터 기반 시뮬레이션을 수행하였고 다수의 초소형 비행체를 이용한 편대 비행 시험을 통해 유도 법칙의 타당성을 검증하고 확인하였다.

곤충의 호버링 비행을 구현하는 메카니즘의 설계 (Design of a Mechanism for Reproducing Hovering Flight of Insects)

  • 정세용;최용제
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.826-831
    • /
    • 2004
  • Recently, studies have been carried out to develop unmanned Micro Air Vehicles(MAVs) that can search and monitor inside buildings during urban warfare or rescue operations in hazardous environments. However, existing fixed-wing and rotary-wing MAVs cannot travel at extremely low or high speeds, hover in place, or change directions instantly. This has lead researches to search for other flight methods that could overcome those drawbacks. Insect flight principles and its applications to MAVs are being studied as an alternative flight method. To take flight, insects flap and rotate their wings. These wing motions allow for high maneuverability flight such as hovering, vertical take off and landing, and quick acceleration and deceleration. This paper proposes a method for designing a mechanism that reproduces hovering insect flight, the basis for all other forms of insect flight. The design of a mechanism that can reproduce the motion that causes maximum lift is proposed, the required specifications are calculated, and a method for reproducing hovering insect flight with a single motor is presented. Also, feasibility of the design was confirmed by simulation.

  • PDF

덕티드 추진체를 사용한 수직 이·착륙 초소형 무인 항공기 개발 동향 (The Development Trend of a VTOL MAV with a Ducted Propellant)

  • 김진완
    • 항공우주시스템공학회지
    • /
    • 제14권1호
    • /
    • pp.68-73
    • /
    • 2020
  • 본 논문은 산악 지형, 도심, 함정, 교량 등에서 수직 이·착륙 비행, 제자리 비행, 고정익기처럼 저속 및 고속비행을 할 수 있는 덕티드 추진체를 사용한 수직 이·착륙 초소형 무인 항공기 개발 동향을 기술한다. 이 항공기는 여러 측면에서 헬리콥터와 고정익기와는 비행 특성이 다르다. 미육군 미래 전투 체계와 DARPA의 OAV 프로그램의 목적은 운용자에 안전하고 낮은 음향 특성을 갖는 수직 이·착륙 덕티드 팬 초소형 무인 항공기 개발이다. 현재의 초소형 무인 항공기에 영상/적외선 카메라를 탑재하고 숲이나 언덕 뒤에 숨어 있는 적을 정지비행과 응시로 약 1 시간 동안 감시 및 정찰을 한다. OAV의 Class-I은 개인 병사가 배낭에 담아 운반할 수 있는 크기와 무게의 수직 이·착륙 덕티드 MAV 개발이다. Class-II는 Class-I보다 두 배의 운용 시간과 더 넓은 범위의 비행이 가능한 유기체의 수직 이·착륙 덕티드 팬 초소형 무인 항공기 개발이다. 초소형 무인기는 장시간 운용을 위해 현재의 '호버 및 응시'에서 '퍼치-앤-응시'으로 기술을 발전시켜야 한다. 근 미래의 OAV 개념은 유·무인 지상 차량이 주행하는 동안에 차량의 상부에 자동 이착륙하고, 탑재된 상태로 이동하고, 재급유, 재충전, 재이륙하는 합동 운용으로 임무 능력과 효율성을 확장하는 것이다. 덕티드 MAV는 지상 차량의 착륙 패드에서 자동으로 이착륙하기 위해 저렴한 초소형 GPS를 활용한 고정밀 상대 위치 기술 개발이 필요하다. 또한, VTOL 덕티드 MAV와 유·무인 지상 차량 간에 유기체의 협업 동작이 가능케하는 공통 명령과 제어 아키텍처를 개발할 필요가 있다.

메모리 비용 최소화를 위한 데이타패스 합성 시스템의 설계 (Design of a Datapath Synthesis System for Minimization of Multiport Memory Cost)

  • 이해동;황선영
    • 전자공학회논문지A
    • /
    • 제32A권10호
    • /
    • pp.81-92
    • /
    • 1995
  • In this paper, we present a high-level synthesis system that generates area-efficient RT-level datapaths with multiport memories. The proposed scheduling algorithm assigns an operation to a specific control step such that maximal sharing of functional units can be achieved with minimal number of memory ports, while satisfying given constraints. We propose a measure of multiport memory cost, MAV (Multiple Access Variable) which is defined as a variable accessed at several control steps , and overall memory cost is reduced by equally distributing the MAVs throughout all the control steps. Experimental results show the effectiveness of the proposed algorithm. When compared with previous approaches for several benchmarks available from literature, the proposed algorithm generates the datapaths with less memory modules and interconnection structures by reflecting the memory cost in the scheduling process.

  • PDF

Control of Distributed Micro Air Vehicles for Varying Topologies and Teams Sizes

  • Collins, Daniel-James;Arvin Agah
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.176-187
    • /
    • 2002
  • This paper focuses on the study of simulation and evolution of Micro Air Vehicles. Micro Air Vehicles or MAVs are small flying robots that are used for surveillance, search and rescue, and other missions. The simulated robots are designed based on realistic characteristics and the brains (controllers) of the robots are generated using genetic algorithms, i .e., simulated evolution. The objective for the experiments is to investigate the effects of robot team size and topology (simulation environment) on the evolution of simulated robots. The testing of team sizes deals with finding an ideal number of robots to be deployed for a given mission. The goal of the topology experiments is to see if there is an ideal topology (environment) to evolve the robots in order to increase their utility in most environments. We compare the results of the various experiments by evaluating the fitness values of the robots i .e., performance measure. In addition, evolved robot teams are tested in different situation in order to determine if the results can be generalized, and statistical analysis is performed to evaluate the evolved results.

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.