• Title/Summary/Keyword: MATLAB Simulation

Search Result 1,410, Processing Time 0.042 seconds

Improvement of Handoff-state and QOS in Wireless Environment

  • Jeong, You-Sun;Choe, U-Gin
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • In this paper, we propose for improving QoS in wireless micro cellular network using Cellular-IP/PRC(Paging Route Cache) with Paging Cache and Route Cache in Cellular-IP and propose for performance of realtime and non-real time handoff service using Handoff state machine Paging Route Cache. Although the Cellular-IP/PRC technology is devised for mobile internet communication, it bas its vulnerability in frequent handoff environment. On the other hand, Cellular IP combines the capability of cellular networks to provide high performance handoff and efficient location management of active and idle mobile users with the inherent flexibility, robustness and scalability found in IP networks. Also Cellular-IP/PRC use semi-soft handoff. During semi-soft hand off a mobile host may be in contact with either of the old and new base stations and receive packets from them. Packets intended to the mobile node are sent to both base stations and buffered, so when the mobile host eventually moves to the new location it can continue to receive packets without interruption. It should be suitable for realtime service such as multimedia traffic. But, much waste of resource will occur in this method, especially for non-real time services such as FTP and E-mail. Therefore, a new algorithm that performs different handoff according to characteristic of each traffic by use of reserved field in IP packet is proposed in this thesis. This hand off state machine using differentiated handoff improves quality of services in Cellular-IP/PRC. Suggested algorithm shows better performance than existing technology in wireless mobile internet communication environment. Matlab simulation results are improving QoS, show call drop and call blocking provided to Paging Router Cache during handoff state machine in Cellular-IP/PRC.

The Average Power Algorithm of Active Power Filters for Asymmetrical Three-Phase Three-Wire Power System (비대칭 3상 3선 전원 시스템을 위한 능동전력필터의 평균전력 알고리즘)

  • 정영국;김우용;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.6
    • /
    • pp.514-524
    • /
    • 2001
  • Conventional average power theory has been used to design and control active power filters But compensating reference currents of active power filters calculated by conventional average power theory are definitively influenced by three phase source voltage conditions such as unbalance or distortion. This paper presents a new average power algorithm for active power filters which can detect symmetrically equally active or fundamental reactive currents in each phase based on decomposition of fundamental reactive component and harmonics under unbalanced power conditions. The effectiveness of the proposed algorithm is demonstrated by MATLAB/SIMULINK simulation and experimental results for a three wire distribution system with 15% unbalanced source voltages.

  • PDF

An Output Control Algorithm for Phase Shift Full Bridge Converter for Ballast Water Treatment (선박 평형수 처리용 Phase Shift Full Bridge Converter 출력 제어 알고리즘)

  • Lee, Sang-Ri;Kim, Hag-Wone;Cho, Kwan-Yuhl;Jung, Ho-Chul;Kim, Jong-Hyug;Park, Gwi-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.530-539
    • /
    • 2013
  • In large vessels, proper water level must be maintained with a balance for right and left equilibrium by absorbing or draining sea water in ballast water tank. However, this ship's ballast-water can be drained marine organisms to local sea area by world trade and this can be a source of ecological disturb. In order to solve these problems, marine organisms must be removed in accordance with the international covenant for the emission of microorganisms. By this reason, the seawater electrolysis rectifier of low-voltage high-current rectifiers with excellent ability for microbial treatment is required. In this paper, PSFB converter will be discussed for the seawater electrolysis rectifier. Furthermore, a new output control method with the power limit operation under the limited maximum voltage condition is proposed for this rectifier. The simulation for the proposed current control method for PSFB Converter is shown using MATLAB/SIMULINK. Finally the usefulness of the proposed control method is presented by the experimental results.

New Generalized SVPWM Algorithm for Multilevel Inverters

  • Kumar, A. Suresh;Gowri, K. Sri;Kumar, M. Vijay
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1027-1036
    • /
    • 2018
  • In this paper a new generalized space vector pulse width modulation scheme is proposed based on the principle of reverse mapping to drive the switches of multilevel inverters. This projected scheme is developed based on the middle vector of the subhexagon which holds the tip of the reference vector, which plays a major role in mapping the reference vector. A new approach is offered to produce middle vector of the subhexagon which holds tip of the reference vector in the multilevel space vector plane. By using middle vector of the subhexagon, reference vector is linked towards the inner two level sub-hexagon. Then switching vectors, switching sequence and dwell times corresponding to a particular sector of a two-level inverter are determined. After that, by using the two level stage findings, the switching vectors related to exact position of the reference vector are directly generated based on principle of the reverse mapping approach and do not need to be found at n level stage. In the reverse mapping principle, the middle vector of subhexagon is added to the formerly found two level switching vectors. The proposed generalized algorithm is efficient and it can be applied to an inverter of any level. In this paper, the proposed scheme is explained for a five-level inverter and the performance is analyzed for five level and three level inverters through MATLAB. The simulation results are validated by implementing the propose scheme on a V/f controlled three-level inverter fed induction motor using dSPACE control desk.

Analysis on the Induced Lightning Shielding Effect According to the Neutral Wire Installation Structure of a 22.9kV Distribution Line (22.9kV 배전선로 중성선 설치 구조에 따른 유도뢰 차폐효과 분석)

  • Kim, Jeom-Sik;Kim, Do-Young;Park, Yong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.191-196
    • /
    • 2010
  • The electricity distribution system in Korea is adopting a multi-grounding system. Protection of this distribution system against lightning is performed by installing overhead ground wires over the high voltage wires, and connecting the overhead ground wires to the ground every 200 m. The ground resistance in this system is limited not to exceed $50\Omega$ and overhead ground wire and neutral wire are multiple parallel lines. Although overhead ground wire and neutral wire are installed in different locations on the same pole, this circuit configuration has duplicated functions of providing a return path for unbalanced currents and protecting the distribution system against induced lightning. Therefore, the purpose of this study is to analyze the induced lightning shielding effect according to the neutral wire installation structure of a 22.9kV distribution line in order to present a new 22.9kV distribution line structure model and characteristics. This study calculated induced lightning voltage by performing numerical analysis when an overhead ground wire is present in the multi-grounding type 22.9kV distribution line structure, and calculated the induced lightning shielding effect based on this calculated induced lightning voltage. In addition, this study proposed and analyzed an improved distribution line model allowing the use of both overhead wire and neutral wire to be installed in the current distribution lines. The result of MATLAB simulation using the conditions applied by Yokoyama showed almost no difference between the induced lightning voltage developed in the current line and that developed in the proposed line. This signifies that shielding the induced lightning voltage through overhead wire makes no difference between current and proposed distribution line structures. That is, this study found that the ground resistance of the overhead wire had an effect on the induced lightning voltage, and that the induced lightning shielding effect of overhead wire is small.

Accuracy of Fire of a Mortar via Multibody Dynamics Analysis (다물체 동역학 해석을 통한 포의 사격정확도 분석)

  • Jin, Jae Hoon;Jung, Samuel;Kim, Tae Yoon;Kim, Young Ku;Ahn, Chang Gi;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.229-236
    • /
    • 2016
  • For this research, the trajectory of a projectile was simulated via the multibody dynamics analysis of a self-propelled mortar. The dynamic model was composed of a mortar model and a vehicle model, and was simulated using the RecurDyn program. Interior ballistic was applied to the mortar model, and exterior ballistic was conducted by Matlab using the simulation results of the interior trajectory. Through repetitive Monte-Carlo simulations, the accuracy of the mortar was analyzed by considering variations in the aiming angle and vehicle dynamic response.

A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage

  • Jarin, T.;Subburaj, P.;Bright, Shibu J V
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2018-2030
    • /
    • 2015
  • A two stage ac drive configuration consisting of a single-phase line commutated rectifier and a three-phase voltage source inverter (VSI) is very common in low and medium power applications. The deterministic pulse width modulation (PWM) methods like sinusoidal PWM (SPWM) could not be considered as an ideal choice for modern drives since they result mechanical vibration and acoustic noise, and limit the application scope. This is due to the incapability of the deterministic PWM strategies in sprawling the harmonic power. The random PWM (RPWM) approaches could solve this issue by creating continuous harmonic profile instead of discrete clusters of dominant harmonics. Insufficient filtering at dc link results in the amplitude distortion of the input dc voltage to the VSI and has the most significant impact on the spectral errors (difference between theoretical and practical spectra). It is obvious that the sprawling effect of RPWM undoubtedly influenced by input fluctuation and the discrete harmonic clusters may reappear. The influence of dc link fluctuation on harmonics and their spreading effect in the VSI remains invalidated. A case study is done with four different filter capacitor values in this paper and results are compared with the constant dc input operation. This paper also proposes an ingenious RPWM, a ripple dosed sinusoidal reference-random carrier PWM (RDSRRCPWM), which has the innate capacity of suppressing the effect of input fluctuation in the output than the other modern PWM methods. MATLAB based simulation study reveals the fundamental component, total harmonic distortion (THD) and harmonic spread factor (HSF) for various modulation indices. The non-ideal dc link is managed well with the developed RDSRRCPWM applied to the VSI and tested in a proto type VSI using the field programmable gate array (FPGA).

Analysis of a Harmonics Neutralized 48-Pulse STATCOM with GTO Based Voltage Source Converters

  • Singh, Bhim;Saha, Radheshyam
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.391-400
    • /
    • 2008
  • Multi-pulse topology of converters using elementary six-pulse GTO - VSC (gate turn off based voltage source converter) operated under fundamental frequency switching (FFS) control is widely adopted in high power rating static synchronous compensators (STATCOM). Practically, a 48-pulse ($6{\times}8$ pulse) configuration is used with the phase angle control algorithm employing proportional and integral (PI) control methodology. These kinds of controllers, for example the ${\pm}80MVAR$ compensator at Inuyama switching station, KEPCO, Japan, employs two stages of magnetics viz. intermediate transformers (as many as VSCs) and a main coupling transformer to minimize harmonics distortion in the line and to achieve a desired operational efficiency. The magnetic circuit needs altogether nine transformers of which eight are phase shifting transformers (PST) used in the intermediate stage, each rating equal to or more than one eighth of the compensator rating, and the other one is the main coupling transformer having a power rating equal to that of the compensator. In this paper, a two-level 48-pulse ${\pm}100MVAR$ STATCOM is proposed where eight, six-pulse GTO-VSC are employed and magnetics is simplified to single-stage using four transformers of which three are PSTs and the other is a normal transformer. Thus, it reduces the magnetics to half of the value needed in the commercially available compensator. By adopting the simple PI-controllers, the model is simulated in a MATLAB environment by SimPowerSystems toolbox for voltage regulation in the transmission system. The simulation results show that the THD levels in line voltage and current are well below the limiting values specified in the IEEE Std 519-1992 for harmonic control in electrical power systems. The controller performance is observed reasonably well during capacitive and inductive modes of operation.

An improved modal strain energy method for structural damage detection, 2D simulation

  • Moradipour, Parviz;Chan, Tommy H.T.;Gallag, Chaminda
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.105-119
    • /
    • 2015
  • Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.

Design and Analysis of High-Speed Unmanned Aerial Vehicle Ground Directional Rectifying Control System

  • Yin, Qiaozhi;Nie, Hong;Wei, Xiaohui;Xu, Kui
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.623-640
    • /
    • 2017
  • The full nonlinear equations of an unmanned aerial vehicle ground taxiing mathematical dynamic model are built based on a type of unmanned aerial vehicle data in LMS Virtual.Lab Motion. The flexible landing gear model is considered to make the aircraft ground motion more accurate. The electric braking control system is established in MATLAB/Simulink and the experiment of it verifies that the electric braking model with the pressure sensor is fitted well with the actual braking mechanism and it ensures the braking response speediness. The direction rectification control law combining the differential brake and the rudder with 30% anti-skid brake is built to improve the directional stability. Two other rectifying control laws are demonstrated to compare with the designed control law to verify that the designed control is of high directional stability and high braking efficiency. The lateral displacement increases by 445.45% with poor rectification performance under the only rudder rectifying control relative to the designed control law. The braking distance rises by 36m and the braking frequency increases by 85.71% under the control law without anti-skid brake. Different landing conditions are simulated to verify the good robustness of the designed rectifying control.