• 제목/요약/키워드: MASS

검색결과 35,807건 처리시간 0.055초

Improved Calibration for the Analysis of Emerging Contaminants in Wastewater Using Ultra High Performance Liquid Chromatography and Time-of-Flight Mass Spectrometry

  • Pellinen, Jukka;Lepisto, Riikka-Juulia;Savolainen, Santeri
    • Mass Spectrometry Letters
    • /
    • 제9권3호
    • /
    • pp.77-80
    • /
    • 2018
  • The focus of this paper is to present techniques to overcome certain difficulties in quantitative analysis with a time-of-flight mass spectrometer (TOF-MS). The method is based on conventional solid-phase extraction, followed by reversed-phase ultra high performance liquid chromatography of the extract, and mass spectrometric analysis. The target compounds included atenolol, atrazine, caffeine, carbamazepine, diclofenac, estrone, ibuprofen, naproxen, simazine, sucralose, sulfamethoxazole, and triclosan. The matrix effects caused by high concentrations of organic compounds in wastewater are especially significant in electrospray ionization mass spectroscopy. Internal-standard calibration with isotopically labeled standards corrects the results for many matrix effects, but some peculiarities were observed. The problems encountered in quantitation of carbamazepine and triclosan, due to nonlinear calibration were solved by changing the internal standard and using a narrower mass window. With simazine, the use of a quadratic calibration curve was the best solution.

RECENT PROGRESS IN HIGH-MASS STAR-FORMATION STUDIES WITH ALMA

  • Hirota, Tomoya
    • 천문학논총
    • /
    • 제33권2호
    • /
    • pp.21-30
    • /
    • 2018
  • Formation processes of high-mass stars have been long-standing issues in astronomy and astrophysics. This is mainly because of major difficulties in observational studies such as a smaller number of high-mass young stellar objects (YSOs), larger distances, and more complex structures in young high-mass clusters compared with nearby low-mass isolated star-forming regions (SFRs), and extremely large opacity of interstellar dust except for centimeter to submillimeter wavelengths. High resolution and high sensitivity observations with Atacama Large Millimeter/Submillimeter Array (ALMA) at millimeter/submillimeter wavelengths will overcome these observational difficulties even for statistical studies with increasing number of high-mass YSO samples. This review will summarize recent progresses in high-mass star-formation studies with ALMA such as clumps and filaments in giant molecular cloud complexes and infrared dark clouds (IRDCs), protostellar disks and outflows in dense cores, chemistry, masers, and accretion bursts in high-mass SFRs.

MASS ESTIMATE TECHNIQUES OF MOLECULAR CLOUDS

  • Lee, Young-Ung
    • 천문학논총
    • /
    • 제9권1호
    • /
    • pp.55-68
    • /
    • 1994
  • We have reviewed three different techniques to estimate molecular cloud mass, and discussed the uncertainties involved. We found that determination of the most important parameter, the $^{13}CO$ abundance, is not very sensitive to the real LTE conditions, and that any possible error in deriving LTE column density may not introduce an error in the total gas column density, as far as the visual extinction is established for the object cloud. The virial technique always endows the largest mass estimate as there are several uncertainties, even if the cloud is in virial equilibrium. The strong indicator of the cloud perturbation is the centroid velocity dispersion. The mass using CO luminosity is based on the empirical law, but weakly dependent on the virial assumption, thus it still gives a larger mass estimate. The mass discrepancy is likely to be inevitable, and a factor of two or three difference between mass estimates could easily be attributed to the uncertainties mentioned above. The LTE mass estimate may be the most reliable one if we use the relation visual extinction and $^{13}CO$ column density of the object cloud, and the intercept is included.

  • PDF

A FULLY EMPIRICAL APPROACH TO GALAXY EVOLUTION

  • Renzini, Alvio
    • 천문학논총
    • /
    • 제25권3호
    • /
    • pp.65-69
    • /
    • 2010
  • Observations of large samples of galaxies from low to high redshifts are composing a picture of remarkable simplicity: (1) The star formation rate (SFR) of starforming galaxies scales almost linearly with mass, strongly decline with cosmic time, and exhibits very small scatter around the average relation. (2) Due to the high observed SFRs the mass of galaxies at high redshifts must increase very rapidly, and yet the mass function of star forming galaxies evolves only very slightly with redshift. (3) At all redshifts the fraction of quenched (passively evolving) galaxies increases with galactic stellar mass and with local overdensity, with the remarkable property that the relative efficiency of "mass quenching" is independent of environment, and that of "environment quenching" is independent of mass. In a recent paper by the zCOSMOS collaboration, Peng et al. (2010) demonstrate that these three empirical facts suffice to account for the observed evolution of the galaxy mass function and naturally generate the "double-Schechter" mass function for quenched galaxies.

Influence of Tip mass on Dynamic Behavior of Cracked Cantilever Pipe Conveying Fluid with Moving Mass

  • Yoon Han-Ik;Son In-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권9호
    • /
    • pp.1731-1741
    • /
    • 2005
  • In this paper, we studied about the effect of the open crack and a tip mass on the dynamic behavior of a cantilever pipe conveying fluid with a moving mass. The equation of motion is derived by using Lagrange's equation and analyzed by numerical method. The cantilever pipe is modelled by the Euler-Bernoulli beam theory. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influences of the crack, the moving mass, the tip mass and its moment of inertia, the velocity of fluid, and the coupling of these factors on the vibration mode, the frequency, and the tip-displacement of the cantilever pipe are analytically clarified.

질량변화를 갖는 유연한 미사일의 동적 안정성에 관한 연구 (A Study on the Dynamic Stability of a Flexible Missile with Mass Variation)

  • 류봉조
    • 한국정밀공학회지
    • /
    • 제8권4호
    • /
    • pp.107-117
    • /
    • 1991
  • The dynamic stability problem of nonconservative system is one of the important problems. In this study, flexible missile with mass variation is regarded as a free Timoshenko beam subjected to a controlled follower force. The stability was studied numerically through the finite element method. Through the study, the obtained results are as follows: [1] Without force direction control (1) In the case of no mass reduction, the existence of concentrated mass increases critical follower force. (2) Mass reduction rate of the beam slightly effects on the change of critical follower force. [2] With force direction control (1) Shear deformation parameter S contributes insignificantly to the force at instability when $S{\geq}10^4$. (2) With mass variation, increase of concentrated mass increases critical follower force at instbility. (3) The type of promary instability is determined by the sensor location.

  • PDF

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber

  • Phan, Thanh-Tong;Song, Sung-Ho;Moon, Choon-Geun;Kim, Jae-Dol;Kim, Eun-Pil;Yoon, Jung-In
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.41-47
    • /
    • 2002
  • A model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber was developed. The model can predict temperature and concentration profiles as well as the absorption heat and mass fluxes, the total heat and mass transfer rates and the heat and mass transfer coefficients. Besides, the effect of operating condition on absorption mass flux has been investigated, with the result that the absorption mass flux is increased as the inlet cooling water temperature decreases, the system pressure increases and the inlet solution concentration increases. And among the effects of operating parameters on absorption mass flux, the effect of inlet solution concentration is dominant.

  • PDF

The Levitation Mass Method: A Precision Mass and Force Measurement Technique

  • Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.46-50
    • /
    • 2008
  • The present status and future prospects of the levitation mass method (LMM), a technique for precision mass and force measurement, are reviewed. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects being tested, such as force transducers, materials, or structures. The inertial force of the levitated mass is measured using an optical interferometer. We have modified this technique for dynamic force calibration of impact, oscillation, and step loads. We have also applied the LMM to material testing, providing methods for evaluating material viscoelasticity under an oscillating or impact load, evaluating material friction, evaluating the biomechanics of a human hand, and generating and measuring micro-Newton-level forces.

Dual Mass Flywheel 시스템의 설계파라미터에 관한 연구

  • 송준혁
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.167-172
    • /
    • 1996
  • A Dual Mass Flywheel system is a evolution to the reduction of torsional vibration and impact noise occuring in powertrain when a vehicle is eit-her moving or idling. The name already explains what it is : The mass of the conventional single mass flywheel is divided. One section continues to belong to the mass moment of inertia of the engine-side. The ot-her section increass the mass moment of inertia of the transmission-side. The two masses are connected via a spring /damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984 Dual Mass Flywheel has been de-veloped again and again. But the prosidures of de-velopment of D.M.F system didn't have had differe-nce from conventional clutch system's trial and err-or This paper presents the method for systematical design of D.M.F system with demensionless design variables of D.M.F system mass ratio between two flywheels λ. natual frequency rate of two flywheel s, ${\gamma}$and viscosity coefficient ζ. And experimental re-sults are used to prove these theoretical results.

  • PDF

곡선보 요소의 고유치 해석에서 질량행렬의 영향 (The Effect of the Mass Matrix in the Eigenvalue Analysis of Curved Beam Elements)

  • 유하상
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.288-296
    • /
    • 1997
  • Curved beam elements with two nodes based on shallow beam geometry and strain interpolations are employed in eigenvalue analysis. In these elements, the displacement interpolation functions and mass matrices are consistent with strain fields. To assess the quality of the element mass matrix in free vibration problems, several numerical experiments are performed. In these analysis, both the inconsistent mass matrices using linear displacement interpolation function and the consistent mass matrices are used to show the difference. The numerical results demonstrate that the accuracy is closely related to the property of the mass matrix as well as that of the stiffness matrix and that the mass matrix consistent with strain fields is very beneficial to eigenvalue analysis. Also, it is proved that the strain based elements are very efficient in a wide range of element aspect ratios and curvature properties.