• Title/Summary/Keyword: MASS(Maritime Autonomous Surface Ship)

Search Result 55, Processing Time 0.023 seconds

Introduction to research on experiments in real sea areas of autonomous Ship (자율운항 선박 실해역 실험 연구 소개)

  • Jin-Soo Kim;Nam-Kyun Im;Donggyun Kim;SungJoon Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.258-260
    • /
    • 2023
  • 목포해양대학교와 삼성중공업은 2021년 공동 연구를 통하여 '실습선 기반 원격/자율 운항 선박 시스템 개발 및 검증'을 수행하였고 이를 통하여 목포해양대학교 실습선인 세계로호를 활용하여 삼성중공업의 자율운항 선박 시스템(Autonomous Navigation System)인 SAS의 Test Bed 시연 실험 시스템을 구축하여 2022년 자율운항 선박(MASS) 기술 요소에 대한 시뮬레이션 기반 SAS(Samsung Autonomous Ship) System 검증 및 '운항 노선에 대한 설정을 통한 선박 자율운항 검증'을 위한 실선·실해역 실험을 통해 이를 시연 및 검증을 시행하였다. 특히 의미 있는 것은 자율운항선박 실선 테스트 과정 중 발생할 수 있는 모든 위험요소 분석을 위해 한국선급과 HAZID Workship을 실시하였고, 이를 통해 국내최초 자율운항실험용 기국 승인 및 선급임시검사 완료 후 실험이 진행되었다는 것이다. 이 연구에서는 실습선 기반 자율운항 선박 실해역 실험 연구를 소개하고 그 결과를 운항자 입장에서 분석하여 향후 보완하여야 할 사항을 제시하였다.

  • PDF

A Basic Study on Route System Operation For MASS - Focused on the Special Area on Busan New Port (자율운항선박 운항을 위한 항로시스템 운영에 관한 기초연구 - 부산신항 주의해역을 중심으로)

  • Sangwon Park;Youngsoo Park
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.74-75
    • /
    • 2021
  • At the 104th IMO MSC, it was decided to make a code for the operation of MASS(Maritime Autonomous Surface Ship). In addition, the government announced a roadmap for preemptive regulatory innovation for autonomous ships and identified 31 related regulatory issues and suggested improvements to revitalize the autonomous ship industry. This study aims to analyze the ship turning left on the route as a study on how to operate the route system when operating MASS. We intend to derive the current congestion degree of the special area of Busan New Port through maritime traffic survey and use simulation to derive the congestion degree of the special area due to the size of ships and increase in traffic volume. We would like to propose an appropriate amount of traffic (the number of L-converted). It is believed that the research results can be used as basic data for route operation when operating not only current ships but also MASS.

  • PDF

Effect of Turning Characteristics of Maritime Autonomous Surface Ships on Collision Avoidance (자율운항선박의 선회특성이 충돌회피에 미치는 영향)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.298-305
    • /
    • 2021
  • Identifying the effect of turning characteristics on collision avoidance for Maritime Autonomous Surface Ships (MASS) can provide a key to avoid the collision of MASS. The purpose of this study was to derive a method to identify the effect of turning characteristics, which can be changed by various rudder angles and the ship's speed, on collision avoidance. The turning circle was observed using a mathematical model of a 161-meter-long ship, and it was analyzed that the turning circle had an effect on collision avoidance through numerical simulations of collision avoidance for four collision situations of two ships. The evaluation results using the two variables, the minimum relative distance between two ships and the minimum time at the minimum relative distance, demonstrated that the rudder angle has a major influence on the change of the minimum relative distance, and the ship's speed has a major influence on the change of the minimum time. The evaluation method proposed in this study was expected to be applicable to collision avoidance as a measures in remote control of MASS.

Legal Status and Major Issue of Maritime Autonomous Surface Ships (MASS) in International Law (자율운항선박의 국제법 지위와 주요쟁점에 관한 연구)

  • Chun, Jung-soo;Park, Han-seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.256-265
    • /
    • 2021
  • Ground, sea and air mobility, such as vehicles, ships, and airplanes, are generally operated by people. Based on the innovative development of autonomous decision-making systems and artificial intelligence (AI) following the recent fourth industrial revolution, research and development on maritime autonomous surface ships (MASS) is been actively performed around the world. Before the realization of the commercialization of MASS in international maritime transport, it is urgent to clarify the characteristics of this ship and its international legal status. This paper aims to analyze the concern of whether a ship without crew members will eventually be operated as a fully unmanned ship or can be recognized as a ship under international law as the number of crew members is gradually reduced owing to the development stage of autonomous ships. Consequently, based on the United Nations Convention on the Law of the Sea (UNCLOS) and the regulations of the International Maritime Organization (IMO), it was found that MASS has the same international legal status as general ships. In addition this paper presents the working principles of enacting and revising the IMO Conventions and international legal measures necessary for the safe operation of MASS.

Development of Safety Management Procedures for an Autonomous Navigation Element Technology Test (선박 자율운항 요소기술 시험을 위한 안전관리절차서 개발)

  • Woo, Donghan;Lee, In-Gyu;Im, Namkyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.566-573
    • /
    • 2021
  • In this study, safety management procedures were developed based on domestic and foreign guidelines and related maritime law to ensure the safe development and implementation of smart autonomous ship technology and Samsung Heavy Industry. The safety management procedure was developed according to the guidelines for (MASS) sea trials (MSC.1/Circ.1604, Annex: Interim guidelines for MASS trials), proposed by International Maritime Organization (IMO) for the relevant authorities and stakeholders of MASS to properly conduct tests of systems and infrastructure related to safety and environmental protection. The developed safety management procedure applies to the maritime demonstration test of a system applying autonomous navigation element technology mounted as a navigation aid on a ship operating under a watch system, while complying with the environmental protection and navigation safety of the coast of Korea.

Path Tracking System for Small Ships based on IMU Sensor and GPS (소형선박을 위한 IMU 센서와 GPS 기반의 경로 추적 시스템)

  • Jo, Yeonsu;Lee, Sukhoon;Jeong, Dongwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.18-20
    • /
    • 2021
  • In order to prevent collision accidents of ships, which has been increasing recently, research on artificial intelligence-based autonomously operated ships (Maritime Autonomous Surface Ship, MASS) is underway. However, most of the studies related to autonomous ships mainly target medium-to-large ships due to the size and cost of the autonomous navigation system, and the sensors used here have a problem in that it is difficult to mount them on small ships. Therefore, this paper provides a path tracking system equipped with GPS and IMU sensors for autonomous operation of small ships. GPS and IMU sensors are utilized to determine the exact position of the vessel, which allows the proposed system to manually control the small vessel model to create a path and then when the small vessel travels the same path. Use the Pure Pursuit algorithm to follow the path. As a result, In this research, it is expected that a lightweight and low-cost sensor can be used to develop an autonomous operation system for small ships at low cost.

  • PDF

A Study on the Capability Analysis of Ship Management Superintendent(SI) for Maritime Autonomous Surface Ship(MASS) - Based on the 3 Stages of the IMO's Classification of Monitering Ship (자율운항선박에 대비한 선박관리감독(SI) 역량 분석에 관한 연구 - IMO 분류 3단계 Monitoring Ship 기준 -)

  • Jin-Ok Jung;Jung-Woo Nam;Jeong-Min Lee;Dae-song Han;In-Gwon Na;Yul-Seong Kim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.76-77
    • /
    • 2021
  • In line with the development of autonomous ships, it is necessary to train professional ship management supervisors to prepare for the transition to the ship's safety management system. Therefore, this study intends to investigate the capabilities required of ship management supervisors in preparation for introduction to autonomously operated ships for ship management supervisors in the field, and to suggest future capability development plans.

  • PDF

A Study on the Changes in Functions of Ship Officer and Manpower Training by the Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 해기사 직능 변화와 인력양성에 관한연구)

  • Lim, Sung-Ju;Shin, Yong-John
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study aims to investigate changes in the demand for ship officers in response to changes in the shipping industry environment in which Maritime Autonomous Surface Ships (MASS) emerge according to the application of the fourth industrial revolution technology to ships, and it looks into changes in the skill of ship officer. It also analyzes and proposes a plan for nurturing ship officers accordingly. As a result of the degree of recognition and AHP analysis, this study suggests that a new training system is required because the current training and education system may cover the job competencies of emergency response, caution and danger navigation, general sailing, cargo handling, seaworthiness maintenance, emergency response, and ship maintenance and management, but tasks such as remote control, monitoring diagnosis, device management capability, and big data analysis require competency for unmanned and shore-based control. By evaluating the importance of change factors in the duties of ship officers in Maritime Autonomous Surface Ships, this study provides information on ship officer educational institutions' response strategies for nurturing ship officers and prioritization of resource allocation, etc. The importance of these factors was compared and evaluated to suggest changes in the duties of ship officers and methods of nurturing ship officers according to the introduction of Maritime Autonomous Surface Ships. It is expected that the findings of this study will be meaningful as it systematically derives the duties and competency factors of ship officers of Maritime Autonomous Surface Ships from a practical point of view and analyzed the perception level of each relevant expert to diagnose expert-level responses to the introduction of Maritime Autonomous Surface Ships.

Development and Performance Evaluation Results of Remote Control Systems for Maritime Autonomous Surface Ships (자율운항선박의 원격제어 시스템 개발과 성능평가 결과)

  • Hong-Jin Kim;Hwa-Sop Roh;Jeong-Bin Yim
    • Journal of Navigation and Port Research
    • /
    • v.48 no.4
    • /
    • pp.335-341
    • /
    • 2024
  • Recently, research, development, and commercialization of maritime autonomous surface ships (MASS) and remote control are in progress. Remote control is intended to secure autonomous navigation environments for existing ships or early-stage MASS using a remote control system (RCS). The main function of an RCS is to control MASS using data transmission between the MASS and the remote control centre. Remote control by a remote control officer also has an important function. The purpose of this study was to develop RCS and a performance evaluation technique for operation data provided by the RCS. The experiment was conducted during the navigation period of a training ship 'Hannara' after building experimental equipment at both an onshore remote control center and a training ship. As a result of evaluating data transmitted and received using the developed RCS, it was confirmed that data transmission was possible within an error range of 0.1%p. Fourteen types of ship information reflecting the navigation environment of the training ship were confirmed to be transmitted and received. The RCS developed in this work complies with the three principles of remote control: safety, reliability, and availability. This study provides a core technology for the development of RCSs for MASS and the evaluation of data transmission performance.

The application of Dynamic Positioning System to Maritime Autonomous Surface Ship(MASS)

  • Jeong-Min, Ki;Hye Ri, Park
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.164-165
    • /
    • 2022
  • 자율운항선박(Maritime Autonomous Surface Ship)의 개발과 도입은 해양 분야의 4차 산업 시대를 이끄는 가장 중요한 기술과 변화이다. 자율운항선박은 해양 사고의 발생 원인 중 가장 높은 비중을 차지하는 인적 요소를 줄이기 위해 인간의 개입 없이 독립적으로 운항하는 선박을 일컫는다. 인간의 개입을 줄이기 위해서는 기존의 선박과 다른 개념과 기술을 개발하고 도입해야 한다. 수십 년 전 개발되어 해상 플랫폼 및 오프쇼어 분야에서 특정 용도로 사용되는 선박 시스템인 동적위치제어스템은 기존의 시스템에 더해 더욱 정교하고 섬세한 선박의 움직임이 가능하도록 다양한 기능을 제공한다. 최근의 영국에서 제출한 IMO 의제 문서에 의하면, 자율운항선박에는 전통적인 앵커와 같은 선박 설비에 더해 추가로 다른 기술이 적용될 수 있다고 밝히며, 동적위치제어시스템을 명시하였다. 본 논문에서는 이러한 기능 중 자율운항선박의 안전한 운항을 달성하기 위해 동적위치제어시스템에서 적용할 수 있는 요인을 알아보고 제시하고자 한다.

  • PDF