• 제목/요약/키워드: MAPK3

검색결과 631건 처리시간 0.033초

Isoegomaketone Ameliorates Atopic Dermatitis via MAPK and STAT Pathway-based Pro-Inflammatory Cytokine Regulation

  • ChangHyun Jin;Ye-Ram Kim;JaeYoung Shin;ByoungOk Cho;Ah-Reum Han
    • 방사선산업학회지
    • /
    • 제17권4호
    • /
    • pp.489-499
    • /
    • 2023
  • Isoegomaketone(IK), isolated from the radiation-induced mutant cultivar of Perilla frutescens var. crispa, is a major phytochemical compound that has attracted attention in pharmacological research. In this study, we demonstrated that IK exerts anti-inflammatory and protective effects on human mast cells and in an atopic dermatitis mouse model. IK inhibited tumor necrosis factor-α(TNF-α), interleukin-6 (IL-6), and IL-8 expression in human mast cells (HMC-1) stimulated with phorbol myristate acetate(PMA) and calcium ionophore A23187 (PMACI). IK significantly reduced the PMACI-induced phosphorylation of ERK and JNK, but not p38. IK also inhibited the PMACI-induced phosphorylation of STAT1 and STAT3. Oral administration of IK in atopic dermatitis mouse model ameliorated skin inflammation severity, as measured by skin thickness and pro-inflammatory cytokine levels such as TNF-α, IL-8, IL-4, and IL-13. These results might suggest that IK is a potent therapeutic agent against skin inflammation and atopic dermatitis.

The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation

  • Jeon, Bo Ra;Kim, Su Jung;Hong, Seung Bok;Park, Hwa-Jin;Cho, Jae Youl;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • 제39권3호
    • /
    • pp.279-285
    • /
    • 2015
  • Background: Korean Red Ginseng has been used as a traditional oriental medicine to treat illness and to promote health for several thousand years in Eastern Asia. It is widely accepted that ginseng saponins, ginsenosides, are the major active ingredients responsible for Korean Red Ginseng's therapeutic activity against many kinds of illness. Although the crude saponin fraction (CSF) displayed antiplatelet activity, the molecular mechanism of its action remains to be elucidated. Methods: The platelet aggregation was induced by collagen, the ligand of integrin ${\alpha}_{II}{\beta}_I$ and glycoprotein VI. The crude saponin's effects on granule secretion [e.g., calcium ion mobilization and adenosine triphosphate (ATP) release] were determined. The activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38 MAPK, and phosphoinositide 3-kinase (PI3K)/Akt was analyzed by immunoblotting. In addition, the activation of integrin ${\alpha}_{II}b{\beta}_{III}$ was examined by fluorocytometry. Results: CSF strongly inhibited collagen-induced platelet aggregation and ATP release in a concentration-dependent manner. It also markedly suppressed $[Ca^{2+}]_i$ mobilization in collagen-stimulated platelets. Immunoblotting assay revealed that CSF significantly suppressed ERK1/2, p38, JNK, PI3K, Akt, and mitogen-activated protein kinase kinase 1/2 phosphorylation. In addition, our fraction strongly inhibited the fibrinogen binding to integrin ${\alpha}_{IIb}{\beta}_3$. Conclusion: Our present data suggest that CSF may have a strong antiplatelet property and it can be considered as a candidate with therapeutic potential for the treatment of cardiovascular disorders involving abnormal platelet function.

Eucommia ulmoides Extract Stimulates Glucose Uptake through PI 3-kinase Mediated Pathway in L6 Rat Skeletal Muscle Cells

  • Hong, Eui-Jae;Hong, Seung-Jae;Jung, Kyung-Hee;Ban, Ju-Yeon;Baek, Yong-Hyeon;Woo, Hyun-Su;Park, Dong-Suk
    • Molecular & Cellular Toxicology
    • /
    • 제4권3호
    • /
    • pp.224-229
    • /
    • 2008
  • Eucommia ulmoides (Duchung) is commonly used for treatment of diabetes in Korean traditional medicine. However, the exact mechanism of its anti-diabetic effect has not yet been fully elucidated. In this study, the effect of E. ulmoides extract on glucose uptake was investigated in L6 rat skeletal muscle cells. E. ulmoides extract stimulated the activity of phosphatidylinositol (PI) 3-kinase that is a major regulatory molecule in glucose uptake pathway. Protein kinase B (PKB) and protein kinase C-${\xi}$ (PKC-${\xi}$), downstream mediators of PI 3-kinase, were also activated by E. ulmoides extract. We assessed the activity of AMP-activated protein kinase (AMPK), another regulatory molecule in glucose uptake pathway. Phosphorylation level of AMPK did not change with treatment of E. ulmoides extract. Phosphorylations of p38 mitogen activated protein kinase (p38 MAPK) and acetyl-CoA carboxylase (ACC), downstream mediators of AMPK, were not significantly different. Taken together, our results suggest that E. ulmoides may stimulate glucose uptake through PI 3-kinase but not AMPK in L6 skeletal muscle cells.

간암 세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 성장 억제 효과 (Anti-Growth Effect of Kaempferol, a Major Component of Polygonati Rhizoma, in Hepatocarcinoma Cells)

  • 주예진;정지천
    • 동의생리병리학회지
    • /
    • 제26권4호
    • /
    • pp.519-526
    • /
    • 2012
  • Recently, herbal flavonoids have been implicated for anti-cancer therapy. Flavonoids as a commonly known for their anti-oxidant activity, are contained in the herbal medicine as well as root of plants, vegetables, fruits, grains, tea, and wine. Kaempferol, a component of Polygonati rhizoma, a member of the herbal flavonoids, has been studied for anti-hypercholesterol, anti-hypertension and anti-diabetes. It is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. Here, we investigated the molecular mechanism underlying kaempferol-induced anti-cancer effects using the human liver cancer cell lines, Hep3B, HepG2, and Sk-Hep-1, and human Chang liver cell as a control. As shown by the FACS analysis, measurement of caspase activity, DAPI and trypan blue staining, and DNA fragmentation assay, kaempferol induced apoptosis in the liver cancer cells with the greater potential in Hep3B cells than other liver cancer cells. In addition, we performed microarray analysis to profile the genome-wide mRNA expression regulated by kaempferol. Many of the apoptosis-related genes were significantly induced in kaempferol-treated Hep3B cells, in particular, the genes associated with MAPK cascade. Additionally, kaempferol induced the mRNA expression of genes involved in MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathway, which are all known to trigger apoptosis. Overall, our data suggest that kaempferol has anti-liver cancer effects by inducing apoptosis through the MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathways.

청견 잎 에탄올 추출물의 NF-𝜅B와 MAPK 조절을 통한 항염증 효과 (Anti-inflammatory Effects of Kiyomi (Citrus unshiu × C. sinensis) Leaf Ethanol Extract Via the Regulation of NF-𝜅B and MAPKs in LPS Induced RAW 264.7 Cells)

  • 박충무;윤현서
    • 대한통합의학회지
    • /
    • 제11권3호
    • /
    • pp.159-169
    • /
    • 2023
  • Purpose : Though other Citrus spp. have reported their anti-inflammatory and antioxidative activities in previous studies, the biological activity of Kiyomi (Citrus unshiu × C. sinensis) has not been reported yet. Therefore, this study attempted to analyze the anti-inflammatory mechanisms of Kiyomi leaf ethanol extract (KLEE) in lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Methods : The cytotoxic effect of KLEE in RAW 264.7 cells was determined by WST-1 assay. Bacterial endotoxin, the concentration of nitric oxide (NO) was analyzed by the Griess reaction. In addition, Western blot analysis was applied to measure the protein expression level of inducible NO synthase (iNOS). The phosphorylated status of the critical inflammatory transcription factor, nuclear factor (NF)-𝜅B, and its upstream signaling molecules, phosphoinositide 3-kinase (PI3K)/Akt as well as mitogen-activated protein kinases (MAPKs), were also measured by Western blot analysis. Results : KLEE was not cytotoxic up to a concentration of 200 ㎍/㎖, and protein expression levels of iNOS and cyclooxygenase (COX)-2, enzymes that counteract NO and prostaglandin (PG) E2 production, were inhibited by KLEE treatment. The phosphorylated status of PI3K/Akt as well as MAPKs including extracellular regulated kinase (ERK), c-jun NH2kinase (JNK), and p38, were significantly attenuated by KLEE treatment in LPS stimulated RAW 264.7 cells. Moreover, one of phase II enzymes, heme oxygenase (HO)-1 which has known for its anti-inflammatory capacity, was strongly induced by KLEE treatment. Conclusion : Consequently, KLEE treatment significantly attenuated the production of NO as well as the expression levels of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells. The inflammatory transcription factor, NF-𝜅B, as well as its upstream signaling molecules, PI3K/Akt and MAPKs, were also diminished by KLEE treatment with statistical significance in LPS-stimulated RAW 264.7 cells. These results suggest that KLEE might be a promising candidate for the attenuation of inflammatory disorders.

CHANGING OF RGS TRANSCRIPTS LEVELS BY LOW-DOSE-RATE IONIZING RADIATION IN MOUSE TESTIS

  • Kim, Tae-Hwan;Baik, Ji Sue;Heo, Kyu;Kim, Joong Sun;Lee, Ki Ja;Rhee, Man Hee;Kim, Sung Dae
    • Journal of Radiation Protection and Research
    • /
    • 제40권3호
    • /
    • pp.187-193
    • /
    • 2015
  • Deleterious effects of high dose radiation exposure with high-dose-rate are unarguable, but they are still controversial in low-dose-rate. The regulator of G-protein signaling (RGS) is a negative regulator of G protein-coupled receptor (GPCR) signaling. In addition, it is reported that irradiation stress led to GPCR-mediated mitogen-activated protein kinase (MAPK) and phosphotidylinositol 3-kinase (PI3-k) signaling. The RGS mRNA expression profiles by whole body radiation with low-dose-rate has not yet been explored. In the present study, we, therefore, examined which RGS was modulated by the whole body radiation with low-dose-rate ($3.49mGy{\cdot}h^{-1}$). Among 16 RGS expression tested, RGS6, RGS13 and RGS16 mRNA were down-regulated by low-dose-rate irradiation. This is the first report that whole body radiation with low-dose-rate can modulate the different RGS expression levels. These results are expected to reveal the potential target and/or the biomarker proteins associated with male testis toxicity induced by low-dose-rate irradiation, which might contribute to understanding the mechanism beyond the testis toxicity.

Rodgersia podophylla Leaves Suppress Inflammatory mediators through activation of Nrf2/HO-1 signaling, and inhibition of LPS-induced NF-κB and MAPKs signaling in RAW264.7 cells

  • Kim, Ha Na;Kim, Jeong Dong;Park, Su Bin;Jeong, Jin Boo
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.94-94
    • /
    • 2019
  • In this study, we elucidated the anti-inflammatory mechanisms of leaves extracts from Rodgersia podophylla (RPL) in RAW264.7 cells. RP-L significantly inhibited the production of the proinflammatory mediators such as NO, iNOS, IL-$1{\beta}$ and IL-6 in LPS-stimulated RAW264.7 cells. RPL increased HO-1 expression in RAW264.7 cells, and the inhibition of HO-1 by ZnPP reduced the inhibitory effect of RPL against LPS-induced NO production in RAW264.7 cells. Inhibition of p38, ROS and $GSK3{\beta}$ attenuated RPL-mediated HO-1 expression. Inhibition of ROS inhibited p38 phosphorylation and $GSK3{\beta}$ expression induced by RPL. In addition, inhibition of $GSK3{\beta}$ blocked RPL-mediated p38 phosphorylation. RPL induced nuclear accumulation of Nrf2, and Inhibition of p38, ROS and $GSK3{\beta}$ abolished RPL-mediated nuclear accumulation of Nrf2. Furthermore, RPL blocked LPS-induced degradation of $I{\kappa}B-{\alpha}$ and nuclear accumulation of p65. RP-L also attenuated LPS-induced phosphorylation of ERK1/2 and p38. Our results suggest that RPL exerts potential antiinflammatory activity by activating ROS/$GSK3{\beta}$/p38/Nrf2/HO-1 signaling and inhibiting NF-${\kappa}B$ and MAPK signaling in RAW264.7 cells. These findings suggest that RPL may have great potential for the development of anti-inflammatory drug.

  • PDF

LPS로 유도된 BV2 세포에서 Dexmetomidine이 갖는 항염증효과에 대한 miR-30a-5p의 시너지 효과 (miR-30a-5p Augments the Anti-inflammatory Effects of Dexmedetomidine in LPS-induced BV2 Cells)

  • 김지은;양승주
    • 대한임상검사과학회지
    • /
    • 제54권3호
    • /
    • pp.201-208
    • /
    • 2022
  • Neuroinflammation is defined as a neurological inflammation within the brain and the spinal cord. In neuroinflammation, microglia are the tissue-resident macrophages of the central nervous system, which act as the first line of defense against harmful pathogens. Dexmedetomidine (Dex) has an anti-inflammatory effect in many neurological conditions. Additionally, the microRNA-30a-5p (miR-30a-5p) mimic has been proven to be effective in macrophages in inflammatory conditions. This study aimed to investigate the synergistic anti-inflammatory effects of both miR-30a-5p and Dex in lipopolysaccharide (LPS)-induced BV2 cells. This study showed that miR-30a-5p and Dex decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) translocation in LPS-induced BV2 cells. MiR-30a-5p and Dex alleviated tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), LPS-induced phosphorylation c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinase (ERK) and p38. Also, the expression of the NOD-like receptor pyrin domain containing 3 inflammasome (NLRP3), cleaved caspase-1, and ASC was inhibited. Furthermore, LPS-stimulated nitric oxide (NO) production, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) expression were attenuated by Dex and miR-30a-5p. Our results indicate that a combination of Dex and miR-30a-5p, attenuates NF-κB activation, the mitogen-activated protein kinase (MAPK) signaling pathway, and inflammatory mediators involved in LPS-induced inflammation and inhibits the activation of the NLRP3 inflammasome in LPS-activated BV2 cells.

미생물 및 산화적 스트레스에 의한 누에 트랜스페린 발현 (Expression of Bombyx mori Transferrin Gene in Response to Oxidative Stress or Microbes)

  • 윤은영;권오유;황재삼;안미영;구태원
    • 생명과학회지
    • /
    • 제21권11호
    • /
    • pp.1607-1611
    • /
    • 2011
  • 누에 트랜스페린(BmTf)의 면역적 기능을 분석하기 위해 다양한 미생물 및 산화적 스트레스를 부가한 누에에서 전사체 발현을 분석해 보았다. E. coli를 주사한 경우에만 표피와 지방체에서만 특이적으로 정상누에에서 보다 BmTf가 과발현 됨을 확인할 수 있었고, E. coli 및 $FeCl_3$의 경구감염과 $FeCl_3$를 주사한 경우에는 BmTf 전사체의 과발현을 확인할 수 없었다. 또한 세균에 의해서만 발현이 증가되는 항균펩타이드와는 다르게 BmTf는 미생물의 종류에 상관없이 세균, 곰팡이 및 바이러스에 의해 발현이 증가됨을 확인할 수 있었고, 이에 반해 산화적 스트레스제인 $H_2O_2$, Cu 및 $FeCl_3$에 의해서는 발현량의 변화가 없었다. 다양한 protein kinase inhibitor 처리 후 2시간 경과시에는 모든 처리구에서 BmTf 발현량이 증가하였으므로 BmTf는 ERK, PLC, PKA, PI3K, MAPK, 및 JNK에 의해 발현이 down-regulation4을 추정할 수 있었다. BmTf 발현의 주요 유도원을 확인하기 위해 E. coli 및 $FeCl_3$를 각각 경구감염과 주사를 통해 누에 체내에 주입한 후 체내 유리 철 양을 분석한 결과, E. coli 주사 및 경구감염한 누에 체내에 철 양은 정상과 거의 유사한 수준이었고, $FeCl_3$를 주입한 경우 철 양이 상당히 증가되었음을 알 수 있었다. 이상의 결과를 통해 BmTf는 미생물 침입시 과발현되어 생체방어 작용을 수행하고, 기초적인 발현량으로 고유기능인 철 대사 및 산화적 스트레스 방어를 수행함을 추정할 수 있었다.

보폐양영전(保肺養營煎)이 알레르기 염증반응에서 Cytokines 및 Transcription에 미치는 영향 (Anti-allergic Effect of Bopyeoyangyeong-jun to Cytokines and Transcription)

  • 이재혁;김홍기;신우진;김진영;박동일
    • 동의생리병리학회지
    • /
    • 제23권1호
    • /
    • pp.127-134
    • /
    • 2009
  • In the present study, we investigated the anti-allergic effect of the water extract of Bopyeoyangyeong-jun(BYJ) to cytokines and transcription. To investigate the biological effect of BYJ, We examined cytotoxicity and inflammatory cytokine secretion with RBL-2H3. We examined tumor necrosis factor-alpha(TNF-$\alpha$), interleukin(IL)-4 secretion from RBL-2H3 cell after pre- treatment with Bopyeoyangyeong-jun of $1\;mg/m{\ell}$, $2\;mg/m{\ell}$. RBL-2H3 cell was stimulated with phorbol 12-myristate 13-acetate(PMA) and calcium ionophore A23187. We observed that Bopyeoyangyeong-jun reduced TNF-$\alpha$, IL-4 secretion and mRNA expression in RBL-2H3 cells. Moreover, the expression of levels of cyclooxygenase (COX)-2 mRNA, nuclear factor-kappa B (NF-${\kappa}B$) (p65) protein, ERK MAPK, and the degradation of level inhibitor kappa B-alpha ($I{\kappa}B-{\alpha}$) were down-regulated by BYJ. Taken together, these results indicate that Bopyeoyangyeong-jun hascontrols TNF-$\alpha$, IL-4 secretion on allergic reaction.