• Title/Summary/Keyword: MAP Kinases

Search Result 121, Processing Time 0.032 seconds

Mitogen-Activated Protein Kinase Signal Transduction in Solid Tumors

  • Lei, Yuan-Yuan;Wang, Wei-Jia;Mei, Jin-Hong;Wang, Chun-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8539-8548
    • /
    • 2014
  • Mitogen-activated protein kinase (MAPK) is an important signaling pathway in living beings in response to extracellular stimuli. There are 5 main subgroups manipulating by a set of sequential actions: ERK(ERK1/ERK2), c-Jun N(JNK/SAPK), p38 MAPK($p38{\alpha}$, $p38{\beta}$, $p38{\gamma}$ and $p38{\delta}$), and ERK3/ERK4/ERK5. When stimulated, factors of upstream or downstream change, and by interacting with each other, these groups have long been recognized to be related to multiple biologic processes such as cell proliferation, differentiation, death, migration, invasion and inflammation. However, once abnormally activated, cancer may occur. Several components of the MAPK network have already been proposed as targets in cancer therapy, such as p38, JNK, ERK, MEK, RAF, RAS, and DUSP1. Among them, alteration of the RAS-RAF-MEK-ERK-MAPK(RAS-MAPK) pathway has frequently been reported in human cancer as a result of abnormal activation of receptor tyrosine kinases or gain-of-function mutations in genes. The reported roles of MAPK signaling in apoptotic cell death are controversial, so that further in-depth investigations are needed to address these controversies. Based on an extensive analysis of published data, the goal of this review is to provide an overview on recent studies about the mechanism of MAP kinases, and how it generates certain tumors, as well as related treatments.

Lobaric Acid Inhibits VCAM-1 Expression in TNF-α-Stimulated Vascular Smooth Muscle Cells via Modulation of NF-κB and MAPK Signaling Pathways

  • Kwon, Ii-Seul;Yim, Joung-Han;Lee, Hong-Kum;Pyo, Suhkneung
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • Lichens have been known to possess multiple biological activities, including anti-proliferative and anti-inflammatory activities. Vascular cell adhesion molecule-1 (VCAM-1) may play a role in the development of atherosclerosis. Hence, VCAM-1 is a possible therapeutic target in the treatment of the inflammatory disease. However, the effect of lobaric acid on VCAM-1 has not yet been investigated and characterized. For this study, we examined the effect of lobaric acid on the inhibition of VCAM-1 in tumor necrosis factor-alpha (TNF-${\alpha}$)-stimulated mouse vascular smooth muscle cells. Western blot and ELISA showed that the increased expression of VCAM-1 by TNF-${\alpha}$ was significantly suppressed by the pre-treatment of lobaric acid ($0.1-10{\mu}g/ml$) for 2 h. Lobaric acid abrogated TNF-${\alpha}$-induced NF-${\kappa}B$ activity through preventing the degradation of $I{\kappa}B$ and phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and p38 mitogen activated protein (MAP) kinase. Lobaric acid also inhibited the expression of TNF-${\alpha}$ receptor 1 (TNF-R1). Overall, our results suggest that lobaric acid inhibited VCAM-1 expression through the inhibition of p38, ERK, JNK and NF-${\kappa}B$ signaling pathways, and downregulation of TNF-R1 expression. Therefore, it is implicated that lobaric acid may suppress inflammation by altering the physiology of the atherosclerotic lesion.

Immature Oocyte-Specific Zap70 and Its Functional Analysis in Regulating Oocyte Maturation

  • Kim, Yun-Na;Kim, Eun-Ju;Kim, Eun-Young;Lee, Hyun-Seo;Kim, Kyeoung-Hwa;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.145-153
    • /
    • 2009
  • Previously, we obtained the list of genes differentially expressed between GV and MII oocytes. Out of the list, we focused on functional analysis of Zap70 in the present study, because it has been known to be expressed only in immune cells. This is the first report about the expression and its function of Zap70 in the oocytes. Synthetic 475 bp Zap70 dsRNA was microinjected into the GV oocytes, and the oocytes were cultured in vitro. In addition to maturation rates, meiotic spindle and chromosome rearrangements, and changes in expression levels of transcripts of three kinases, Erk1/2, JNK, and p38, were determined. Zap70 is highly expressed in immature GV oocytes, and gradually decreased as oocyte matured. When dsRNA of Zap70 was injected into the GV oocytes, Zap70 mRNA specifically and completely decreased by 2 hr and its protein expression also decreased significantly. Absence of Zap70 resulted in maturation inhibition at meiosis I (57%) with abnormalities in meiotic spindle formation and chromosome rearrangement. Concurrently, mRNA expression of Erk2, JNK, and p38, were affected by Zap70 RNAi. Therefore, we concluded that Zap70 is involved in MI-MII transition by affecting expression of MAP kinases.

  • PDF

The Effect of Treadmill Exercise on Tau Hyperphosphorylayion in an Aged Transgenic Mouse Model of Taupathies

  • Wang, Seong-Hwan;Kang, Eun-Bum;Kwon, In-Su;Koo, Jung-Hoon;Shin, Kwang-O;Jang, Yong-Chul;Um, Hyun-Sub;Oh, Yoo-Sung;Kim, Chul-Hyun;Cho, In-Ho;Cho, Joon-Yong
    • Korean Journal of Exercise Nutrition
    • /
    • v.16 no.2
    • /
    • pp.93-100
    • /
    • 2012
  • Alzheimer's disease (AD) is the most common cause of dementia in adults. Microtubule associated protein tau is abnormally phosphorylated in AD and aggregates as paired helical filaments (PHFs) in neurofibrillary tangles (NFTs). NFTs are the most common intraneuronal inclusion in the brains of patients with AD and have been implicated in mediating neuronal cell death and cognitive deficit. Aberrant phosphorylation of tau is an early pathological event in AD, but the underlying mechanisms are unclear. MAP kinases are a family of Serine/Threonine (Ser/Thr) kinases that involved hyper - phosphorylation of tau in AD. The purpose of this study was to investigate the effect of treadmill exercise on phosphorylation of tau level and activation of MAPKs including JNK, ERK, p38-MAPK. To address this, Tg mouse model of AD, Tg-NSE/hTau 23, which expresses human tau 23 in the brain, was chosen. Animals were subjected to treadmill exercise for 12 weeks from 24 months of age. Treadmill exercise in Tg group improved cognitive function compared with Tg-SED group in watermaze test. In addition, treadmill exercised Tg mice significantly reduced the activation of JNK54/46, p38-MAPK and tau (Ser404, Ser202, Thr231), and increased activation of ERK44/42 in cerebral cortex. These results suggest that treadmill exercise may provide a therapeutic potential to alleviate the tau pathology like AD.

Cytotoxic and Apoptotic Activites of Echinomycin Derivative (Echinomycin-7) on P388 Murine Leukemia Cells

  • Jeon, Hyang;Kim, Sung-Su;Kim, Yoon-Suk;Park, Yil-Sung;Kim, Yong-Hae;Choi, Sun-Ju;Kim, Soo-Kie;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.560-564
    • /
    • 1998
  • Echinomycin-7 is an echinomycin derivative, Smethylated sulfonium perchlorate of echinomycin. We studied the in vitro cytotoxicity and in vivo antitumor activity of echinomycin-7 against P388 leukemia cells and compared the results with echinomycin. With respect to the cytotoxic effects, echinomycin-7 had cell line-dependent $IC_{50}$ values while echinomycin had similar values to several tumor cell lines. Also, in vivo antitumor activities were observed in tumor-bearing mice treated with both agents, which showed that echinomycin-7 had a broad therapeutic dose range. We also observed the apoptosis on leukemia cells treated with echinomycin-7 which exihibited the ladder pattern of DNA on electrophoresis. In addition to apoptosis, echinomycin-7 arrested $G_1/S$ phases of the cell cycle at the same time. We then examined the signaling pathway of echinomycin-7-induced apoptosis and showed that ERK of the MAP kinase family was activated and translocated into the nucleus by echinomycin-7 stimulation. This study suggests that echinomycin-7 acts as an antitumor agent through in vitro cytotoxicity and has in vivo antitumor activity against leukemia cells, and that the echinomycin-7- induced apoptosis might involve signal transduction via MAP kinases.

  • PDF

Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection

  • Wang, Yiming;Kwon, Soon Jae;Wu, Jingni;Choi, Jaeyoung;Lee, Yong-Hwan;Agrawal, Ganesh Kumar;Tamogami, Shigeru;Rakwal, Randeep;Park, Sang-Ryeol;Kim, Beom-Gi;Jung, Ki-Hong;Kang, Kyu Young;Kim, Sang Gon;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.343-354
    • /
    • 2014
  • Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L.) in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10) by RT-PCR, and phytoalexins (sakuranetin and momilactone A) with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05) in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

Protein Tyrosine Kinases, $p56^{lck}\;and\;p59^{fyn}$, MAP Kinase JNK1 Provide an Early Signal Required for Upregulation of Fas Ligand Expression in Aburatubolactam C-Induced Apoptosis of Human Jurkat T Cells

  • BAE MYUNG AE;JUN DO YOUN;KIM KYUNG MIN;KIM SANG KOOK;CHUN JANG SOO;TAUB DENNIS;PARK WAN;MOON BYUNG-JO;KIM YOUNG HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.756-766
    • /
    • 2005
  • The signaling mechanism underlying aburatubolactam C-induced FasL upregulation was investigated in human Jurkat T cells. After treatment with aburatubolactam C, the src-family PTKs $p56^{lck}\;and\;p59^{fyn}$, and MAP kinases ERK2 and JNK1, were activated prior to FasL upregulation; Both $p56^{lck}\;and\;p59^{fyn}$ were directly activated 2.4- and 2.2-fold, respectively, in vitro by aburatubolactam C. The aburatubolactam C-induced cellular changes, including the activation of ERK2 and INK1, and FasL upregulation, were completely prevented by the PTK inhibitor genistein. The activation of protein kinase C (PKC$\delta,\;\epsilon\;and\;\mu$ was also induced following aburatubolactam C treatment. Although the activation of $p56^{lck}$ and tyrosine phosphorylation of the cellular proteins were not blocked by the PKC inhibitor GFl09203X, the activation of ERK2 was completely abrogated, along with a detectably enhanced JNK1 activation; FasL upregulation, and apoptosis. However, the FasL upregulation and apoptosis were significantly inhibited by the PKC activator PMA, with a remarkable increase in the ERK2 activation. The cytotoxic effect of aburatubolactam C was reduced in the presence of the anti-Fas neutralizing antibody ZB-4. Although ectopic expression of Bcl-2 failed to completely block the cytotoxicity of aburatubolactam C, it was clearly suppressed. The c-Fos mRNA expression was upregulated in a biphasic manner, where the second phasic expression overlapped with the FasL upregulation. Accordingly, these results demonstrate that aburatubolactam C-induced apoptosis is exerted, at least in part, by FasL upregulation dictated by activation of the PTK ($p56^{lck}\;and\;p59^{fyn}$) /JNKI pathway, which is negatively affected by the concurrent activation of the PKC/ERK2 pathway proximal to PTK activation.

Molecular Cloning and Characterization of a P38-Like Mitogen-Activated Protein Kinase from Echinococcus granulosus

  • Lu, Guodong;Li, Jing;Zhang, Chuanshan;Li, Liang;Bi, Xiaojuan;Li, Chaowang;Fan, Jinliang;Lu, Xiaomei;Vuitton, Dominique A.;Wen, Hao;Lin, Renyong
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.6
    • /
    • pp.759-768
    • /
    • 2016
  • Cystic echinococcosis (CE) treatment urgently requires a novel drug. The p38 mitogen-activated protein kinases (MAPKs) are a family of Ser/Thr protein kinases, but still have to be characterized in Echinococcus granulosus. We identified a 1,107 bp cDNA encoding a 368 amino acid MAPK protein (Egp38) in E. granulosus. Egp38 exhibits 2 distinguishing features of p38-like kinases: a highly conserved T-X-Y motif and an activation loop segment. Structural homology modeling indicated a conserved structure among Egp38, EmMPK2, and H. sapiens $p38{\alpha}$, implying a common binding mechanism for the ligand domain and downstream signal transduction processing similar to that described for $p38{\alpha}$. Egp38 and its phosphorylated form are expressed in the E. granulosus larval stages vesicle and protoscolices during intermediate host infection of an intermediate host. Treatment of in vitro cultivated protoscolices with the p38-MAPK inhibitor ML3403 effectively suppressed Egp38 activity and led to significant protoscolices death within 5 days. Treatment of in vitro-cultivated protoscolices with $TGF-{\beta}1$ effectively induced Egp38 phosphorylation. In summary, the MAPK, Egp38, was identified in E. granulosus, as an anti-CE drug target and participates in the interplay between the host and E. granulosus via human $TGF-{\beta}1$.

Berberine Chloride Inhibits Receptor Activator of $NF-{\kappa}B$ Ligand-induced Osteoclastogenesis via Preventing ERK Activation

  • Cheon, Myeong-Sook;Kim, Myung-Hee;Lee, Su-Ui;Ryu, Shi-Yong;Kim, Ho-Kyoung;Min, Yong-Ki;Kim, Seong-Hwan
    • Korean Journal of Oriental Medicine
    • /
    • v.13 no.2 s.20
    • /
    • pp.157-164
    • /
    • 2007
  • An imbalance in bone remodeling that is caused by increased bone resorption over bone formation leads to most adult skeletal diseases including osteoporosis. Since the development of anti-resorptive agents from natural substances has recently gained more interest in the treatment of osteoporosis, we evaluated the effects of 222 natural compounds on receptor activator of $NF-{\kappa}B$ ligand (RANKL)-induced of tartrate-resistance acid phosphatase (TRAP) activity in RAW264.7 murine macrophage cell, and found that berberine chloride is one of compounds inhibiting RANKL-induced TRAP activity. Berberine chloride significantly inhibited the RANKL-induced TRAP activity and the formation of multinucleated osteoclasts in a dose-dependent manner. In addition, berberine chloride prevented the RANKL-induced mRNA expression of TRAP, matrix metalloproteinase 9 and c-Src, which have been known to be highly expressed in the process of osteoclastogenesis. Interestingly, berberine chloride prevented the RANKL-induced activation of extracellular signal-regulated kinase (ERK) which is one of mitogen-activated protein (MAP) kinases. In conclusion, berberine chloride could inhibit the osteoclastogenesis via preventing the activation of ERK/MAP kinase signaling pathway.

  • PDF

The Mitogen-Activated Protein Kinase Signal Transduction Pathways in Alternaria Species

  • Xu, Houjuan;Xu, Xiaoxue;Wang, Yu-Jun;Bajpai, Vivek K.;Huang, Lisha;Chen, Yongfang;Baek, Kwang-Hyun
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.227-238
    • /
    • 2012
  • Mitogen-activated protein kinase (MAPK) cascades are conserved signaling modules in the eukaryotic cells. They are involved in many major cell processes in fungi such as stress responses, vegetative growth, pathogenicity, secondary metabolism and cell wall integrity. In this review, we summarized the advances of research on the MAPK signaling pathways in Alternaria species. As major phytopathogenic fungi, Alternaria species reduce crop production. In contrast to the five MAPK pathways known in yeast, only three MAPK pathways as Fus3/Kss1-type, Hog1-type, and Slt2-type have been characterized in Alternaria. The Fus3/Kss1-type MAPK pathway participates in regulation of vegetative growth, conidiation, production of some cell-wall-degrading enzymes and pathogenicity. The Hog1-type pathway is involved in osmotic and oxidative stress, fungicides susceptibility and pathogenicity. The Slt2-type MAP kinases play an important role on maintaining cell wall integrity, pathogenicity and conidiation. Although recent advances on the MAPK pathways in Alternaria spp. reveal many important features on the pathogenicity, there are many unsolved problems regarding to the unknown MAP kinase cascade components and network among other major signal transduction. Considering the economic loss induced by Alternaria spp., more researches on the MAPK pathways will need to control the Alternaria diseases.