• Title/Summary/Keyword: MAP Estimation

Search Result 821, Processing Time 0.022 seconds

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Maximum A Posteriori Estimation-based Adaptive Search Range Decision for Accelerating HEVC Motion Estimation on GPU

  • Oh, Seoung-Jun;Lee, Dongkyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4587-4605
    • /
    • 2019
  • High Efficiency Video Coding (HEVC) suffers from high computational complexity due to its quad-tree structure in motion estimation (ME). This paper exposes an adaptive search range decision algorithm for accelerating HEVC integer-pel ME on GPU which estimates the optimal search range (SR) using a MAP (Maximum A Posteriori) estimator. There are three main contributions; First, we define the motion feature as the standard deviation of motion vector difference values in a CTU. Second, a MAP estimator is proposed, which theoretically estimates the motion feature of the current CTU using the motion feature of a temporally adjacent CTU and its SR without any data dependency. Thus, the SR for the current CTU is parallelly determined. Finally, the values of the prior distribution and the likelihood for each discretized motion feature are computed in advance and stored at a look-up table to further save the computational complexity. Experimental results show in conventional HEVC test sequences that the proposed algorithm can achieves high average time reductions without any subjective quality loss as well as with little BD-bitrate increase.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.

The Application of GIS and AHP for Landslide Vulnerable Estimation (산사태 취약성 평가를 위한 GIS와 AHP법의 적용)

  • Yang, In-Tae;Chun, Ki-Sun;Lee, Sang-Yoon
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.47-54
    • /
    • 2005
  • The goal of this study is to generate a landslide potential map using GIS(Geographic Information System) based method. A simple and efficient algorithm is proposed to generate a landslide potentialities map from DEM(Digital Elevation Model) and existing maps. The categories of controlling factors for landslides, aspect of slope, soil, vegetation are defined. The weight value for landslide potentialities is calculated from AHP(Analytic Hierarchy Process) method. Slope and Slope-direction is extracted from DEM, and soil information is extracted from digital soil map. Also, vegetation information is extracted from digital vegetation map. Finally, as overlaying, landslide potentialities map is made out, and it is compared with landslide place.

  • PDF

Efficient Parallel Processing for Depth-Map Estimation in Real-Time (실시간 깊이 지도 획득을 위한 효율적인 병렬 처리)

  • Cho, Chil-Suk;Jun, Ji-In;Choo, Hyun-Gon;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.44-46
    • /
    • 2012
  • Depth map를 구하는 방법 중 많이 사용되어지는 방법으로 stripe 패턴을 이용하는 방법이 존재한다. 이 방법은 Pro-Cam 시스템을 이용하며 프로젝터로 조사한 패턴을 카메라로 촬영하여 원래의 패턴과 촬영된 패턴간의 기하학적인 관계를 구하여 depth map를 구하는 방법이다. 본 논문에서는 이와 같이 구조광을 이용하여 depth map 획득 시스템을 효과적으로 multi-thread를 사용하여 실시간 처리하는 것을 제안한다. 일반적으로 자주 사용되는 multi-threading 기법에는 CPU의 thread를 이용하는 OpenMP와 GPU의 thread를 이용하는 CUDA가 있다. 이 두 가지 기법은 수행하는데 차이점이 존재하기 때문에 상황에 따라 OpenMP가 더 좋은 효율을 보이는 부분이 있고 CUDA가 더 좋은 효율을 보이는 부분이 있다. 때문에 우리는 이 두 가지에 대해서 각 부분의 특성에 맞게 더 좋은 효율을 보이는 multi-thread를 이용하였다. 결과적으로 우리는 $1280{\times}800$의 영상에 대해 25fps 이상의 depth map를 획득하였다.

  • PDF

Depth Map Generation Algorithm from Single Defocused Image (흐린 초점의 단일영상에서 깊이맵 생성 알고리즘)

  • Lee, Yong-Hwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.67-71
    • /
    • 2016
  • This paper addresses a problem of defocus map recovery from single image. We describe a simple effective approach to estimate the spatial value of defocus blur at the edge location of the image. At first, we perform a re-blurring process using Gaussian function with input image, and calculate a gradient magnitude ratio with blurring amount between input image and re-blurred image. Then we get a full defocus map by propagating the blur amount at the edge location. Experimental result reveals that our method outperforms a reliable estimation of depth map, and shows that our algorithm is robust to noise, inaccurate edge location and interferences of neighboring edges within input image.

Land Cover Classification and SCS Runoff Estimation using Remotely Sensed Imaged (위성영상을 이용한 토지피복 분류 및 SCS 유출량 산정)

  • 이윤아;함종화;장석길;김성준
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.544-549
    • /
    • 1999
  • The objective of this study is to identify the applicability of land cover image classified by remotely sensed data ; Landsat TM merged by SPOT for hydrological applications such as SCS runoff estimation . By comparing the calssified land cover image with the statistical data, it was proved that hey are agreed well with little errors. As a simple application , SCS runoff estimation was tested by varying rainfall intensity and AMC with Soilmap classfied by hydrologica soil map.

  • PDF

A Depth Estimation Using Infocused and Defocused Images (인포커스 및 디포커스 영상으로부터 깊이맵 생성)

  • Mahmoudpour, Seed;Kim, Manbae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.11a
    • /
    • pp.114-115
    • /
    • 2013
  • The blur amount of an image changes proportional to scene depth. Depth from Defocus (DFD) is an approach in which a depth map can be obtained using blur amount calculation. In this paper, a novel DFD method is proposed in which depth is measured using an infocused and a defocused image. Subbaro's algorithm is used as a preliminary depth estimation method and edge blur estimation is provided to overcome drawbacks in edge.

  • PDF

Depth Map Generation Using Infocused and Defocused Images (초점 영상 및 비초점 영상으로부터 깊이맵을 생성하는 방법)

  • Mahmoudpour, Saeed;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.362-371
    • /
    • 2014
  • Blur variation caused by camera de-focusing provides a proper cue for depth estimation. Depth from Defocus (DFD) technique calculates the blur amount present in an image considering that blur amount is directly related to scene depth. Conventional DFD methods use two defocused images that might yield the low quality of an estimated depth map as well as a reconstructed infocused image. To solve this, a new DFD methodology based on infocused and defocused images is proposed in this paper. In the proposed method, the outcome of Subbaro's DFD is combined with a novel edge blur estimation method so that improved blur estimation can be achieved. In addition, a saliency map mitigates the ill-posed problem of blur estimation in the region with low intensity variation. For validating the feasibility of the proposed method, twenty image sets of infocused and defocused images with 2K FHD resolution were acquired from a camera with a focus control in the experiments. 3D stereoscopic image generated by an estimated depth map and an input infocused image could deliver the satisfactory 3D perception in terms of spatial depth perception of scene objects.

Lane Map-based Vehicle Localization for Robust Lateral Control of an Automated Vehicle (자율주행 차량의 강건한 횡 방향 제어를 위한 차선 지도 기반 차량 위치추정)

  • Kim, Dongwook;Jung, Taeyoung;Yi, Kyong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • Automated driving systems require a high level of performance regarding environmental perception, especially in urban environments. Today's on-board sensors such as radars or cameras do not reach a satisfying level of development from the point of view of robustness and availability. Thus, map data is often used as an additional data input to support these systems. An accurate digital map is used as a powerful additional sensor. In this paper, we propose a new approach for vehicle localization using a lane map and a single-layer LiDAR. The maps are created beforehand using a highly accurate DGPS and a single-layer LiDAR. A pose estimation of the vehicle was derived from an iterative closest point (ICP) match of LiDAR's intensity data to the lane map, and the estimated pose was used as an observation inside a Kalmanfilter framework. The achieved accuracy of the proposed localization algorithm is evaluated with a highly accurate DGPS to investigate the performance with respect to lateral vehicle control.