• Title/Summary/Keyword: MALDI TOF

Search Result 472, Processing Time 0.025 seconds

The enhancement of protein separation by duplex SDS-PAGE (Duplex SDS-PAGE를 이용한 단백질 분리향상)

  • Pyo, Jae Sung;Roh, Si Hun;Song, Jin-Su;Lee, Kyung Hyeon;Kim, Hie-Joon;Park, Jeong Hill;Kwon, Sung Won
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.529-534
    • /
    • 2006
  • The protein separation with molecular weight using SDS-PAGE(sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is the one of the most conventional and simple techniques. In, this study, two dimensional SDS-PAGE using same separation principle consecutively was investigated and compared with one dimensional SDS-PAGE. The enhanced separation from duplex SDS-PAGE was observed and separated proteins in the gel were identified by MALDI TOF MS. Identified proteins from different gel spots were found to have different gi numbers. Therefore, duplex SDS-PAGE separation method will be used for economic separation method in the future because only tiny amount of inexpensive reagents are used to perform duplex SDS-PAGE.

Diagnosis of Subclinical Mastitis-Causing Pathogens Using MALDI-TOF Mass Spectrometry in a Certified Organic Dairy Farm in Korea

  • Sung Jae Kim;Hyun-Tae Kim;Yo-Han Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.6
    • /
    • pp.393-398
    • /
    • 2023
  • We identified mastitis-causing pathogens using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) in an organic dairy farm and evaluated the effects of antimicrobial restriction on antimicrobial susceptibility. A total of 43 Holstein cows without any clinical sign of mastitis were used in this study, and 172 quarter milk samples were cultured on blood agar plates for 24 hours at 37℃. Subsequently, bacterial species were identified and antimicrobial susceptibility tests were performed. The subclinical mastitis infection rates in the cows and quarters were 58.1% (25/43) and 25.6% (44/172), respectively. In the species identification, Staphylococcus aureus (40.9%) was the most prominent isolate, followed by S. chromogenes (22.7%), S. epidermis (18.2%), S. simulans (11.4%), S. haemolyticus (2.3%), S. muscae (2.3%), and S. xylosus (2.3%). In the antimicrobial susceptibility test, all isolates were 100% susceptible to 24 of 28 antibiotics, except for benzylpenicillin, cefalotin, cefpodoxime, and trimethoprim/sulfamethoxazole. The resistance rates of S. aureus, S. chromogenes, and S. muscae isolates to trimethoprim/sulfamethoxazole were 27.8%, 10%, and 100%, respectively, and the resistance rates of S. epidermis and S. xylosus to benzylpenicillin were 50% and 100%, respectively. S. chromogenes, S. epidermis, S. simulans, S. haemolyticus, and S. xylosus were resistant to cefalotin and cefpodoxime. In conclusion, restrictions on antimicrobial use for organic dairy farm certification have resulted in a high Staphylococcus spp. infection rate. Therefore, our study indicates the importance of mastitis management strategies implemented by farmers together with veterinary practitioners, even if mastitis does not appear clinically in organic dairy farms.

Increased Viability of Sub-lethal Heat Shocked Salmonella Typhimurium on Acids and Oxidants (열충격 Salmonella Typhimurium의 산과 산화제에서 생존력 증가)

  • Moon, Bo-Youn;Park, Jong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.712-716
    • /
    • 2008
  • In an effort to evaluate Salmonella food safety using combinations of preservation techniques, its viabilities when exposed to HCl, acetic acid, and the oxidative agents (hydrogen peroxide and butyl hydrogen peroxide), were analyzed using sub-lethal heat-shocked Salmonella Typhimurium at $56^{\circ}C$. 2D gel electrophoresis and MALDI-TOF MS analyses were also conducted to determine the expression and repression of proteins in heat-shocked cells. Heat-shocked S. Typhimurium evidenced a reduction of viable counts by 1-2 log CFU/mL. However, viality of non heat-shocked S. Typhimurium decreased markedly by 5-6 log CFU/mL at a pH 4 in response to acid and oxidative stresses. Sub-lethal heat treatment greatly increased the resistance of S. Typhimurium against acid and oxidant agents. As for 2D gel electrophoresis and protein identification via MALDI-TOF MS, 17 major proteins in non heat-shocked S. Typhimurium were detected, and only 13 proteins among these proteins were detected in heat-shocked S. Typhimurium. The heat shock proteins such as DnaK and small heat shock proteins were included, and may be associated with the resistance of S. typhimurium against exposure to acids and oxidants. Therefore, even though the promising hurdle technology using the combined mild treatments including heat was applied to S. Typhimurium, the proper heat treatment to reduce its crossprotection activity toward the following preservative agents might be considered.

Proteome Analysis of Responses to Ascochlorin in LPS-induced Mouse Macrophage RAW264.7 Cells by 2-D Gel Electrophoresis and MALDI-TOF MS. (LPS로 자극된 macrophage RAW264.7 세포에서 ascochlorin에 대한 단백질체 분석)

  • Chang, Young-Chae
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.814-825
    • /
    • 2008
  • Ascochlorin (ASC) is prenyl-phenol compound that was isolated from the fungus Ascochyta viciae. ASC reduces serum cholesterol and triglyceride levels, and suppresses hypertension, tumor development, ameliorates type I and II diabetes. Here, to better understand the mechanisms by which ASC regulates physiological or pathological events and induces responses in the pharmacological treatment of inflammation, we performed differential analysis of the proteome of the mouse macrophage RAW264.7 cells in response to ASC. In this study, we used a proteomic analysis of LPS-induced RAW264.7 cells treated by ASC, to identify proteins potentially involved in inflammatory processes. The RAW264.7 cell proteomes with and without treatment with ASC were compared using two-dimensional electrophoresis (2-D SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS) and bioinformatics. The largest differences in expression were observed for the calreticulin (4-fold decrease), ${\beta}-actin$ (4-fold decrease) and vimentin (1.5-fold decrease). In addition, rabaptin was increased 3-fold in RAW264.7 cells treated with ASC. The expression of some selected proteins was confirmed by RT-PCR analysis.

Surface Mass Imaging Technique for Nano-Surface Analysis

  • Lee, Tae Geol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.113-114
    • /
    • 2013
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging is a powerful technique for producing chemical images of small biomolecules (ex. metabolites, lipids, peptides) "as received" because of its high molecular specificity, high surface sensitivity, and submicron spatial resolution. In addition, matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) imaging is an essential technique for producing chemical images of large biomolecules (ex. genes and proteins). For this talk, we will show that label-free mass imaging technique can be a platform technology for biomedical studies such as early detection/diagnostics, accurate histologic diagnosis, prediction of clinical outcome, stem cell therapy, biosensors, nanomedicine and drug screening [1-7].

  • PDF

Proteome Data Analysis of Hairy Root of Panax ginseng : Use of Expressed Sequence Tag Data of Ginseng for the Protein Identification (인삼 모상근 프로테옴 데이터 분석 : 인삼 EST database와의 통합 분석에 의한 단백질 동정)

  • Kwon, Kyung-Hoon;Kim, Seung-Il;Kim, Kyung-Wook;Kim, Eun-A;Cho, Kun;Kim, Jin-Young;Kim, Young-Hwan;Yang, Deok-Chun;Hur, Cheol-Goo;Yoo, Jong-Shin;Park, Young-Mok
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • For the hairy root of Panax ginseng, we have got mass spectrums from MALDI/TOF/MS analysis and Tandem mass spectrums from ESI/Q-TOF/MS analysis. While mass spectrum provides the molecular weights of peptide fragments digested by protease such as trypsin, tandem mass spectrum produces amino acid sequence of digested peptides. Each amino acid sequences can be a query sequence in BLAST search to identify proteins. For the specimens of animals or plants of which genome sequences were known, we can easily identify expressed proteins from mass spectrums with high accuracy. However, for the other specimens such as ginseng, it is difficult to identify proteins with accuracy since all the protein sequences are not available yet. Here we compared the mass spectrums and the peptide amino acid sequences with ginseng expressed sequence tag (EST) DB. The matched EST sequence was used as a query in BLAST search for protein identification. They could offer the correct protein information by the sequence alignment with EST sequences. 90% of peptide sequences of ESI/Q-TOF/MS are matched with EST sequences. Comparing 68% matches of the same sequences with the nr database of NCBI, we got more matches by 22% from ginseng EST sequence search. In case of peptide mass fingerprinting from MALDI/TOF/MS, only about 19% (9 proteins of 47 spots) among peptide matches from nr DB were correlated with ginseng EST DB. From these results, we suggest that amino acid sequencing using tandem mass spectrum analysis may be necessary for protein identification in ginseng proteome analysis.

Proteomic Functional Characterization of Bovine Stromal Vascular Cells from Omental, Subcutaneous and Intramuscular Adipose Depots

  • Rajesh, Ramanna Valmiki;Kim, Seong-Kon;Park, Mi-Rim;Nam, Jin-Seon;Kim, Nam-Kuk;Kwon, Seulemina;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.110-124
    • /
    • 2011
  • Anatomically separate fat depots differ in size, function, and contribution to pathological states such as the metabolic syndrome. We isolated pre-adipocytes from different adipose depots, omental, subcutaneous and intramuscular, of beef cattle, and cultured in vitro to determine the basis for the variations and attribute these variations to the inherent properties of adipocyte progenitors. The proliferating cells from all depots before the confluence were harvested and the proteome was analyzed by a functional proteomic approach, involving 2-DE and MALDI-TOF/TOF. More than 252 protein spots were identified, selected and analyzed by Image Master (ver 7.0) and MALDI-TOF/TOF. Further, our analysis showed that there were specific differences in proteome expression patterns among proliferating precursor cells from the three depots. Sixteen proteins were found to be differentially expressed and these were identified as proteins involved in cellular processes, heat shock/chaperones, redox proteins, cytoskeletal proteins and metabolic enzymes. The results also enabled us to understand the basic roles of these proteins in different inherent properties exhibited by adipose tissue depots.

Comparison of Plasma Proteome Expression between the Young and Mature Adult Pigs

  • Jeong, Jin Young;Nam, Jin Sun;Kim, Jang Mi;Jeong, Hak Jae;Kim, Kyung Woon;Lee, Hyun-Jeong
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.247-253
    • /
    • 2013
  • Here, we present an approach of blood plasma proteome profiling and their comparisons between the young and the adult pigs as prerequisite for the identification of bio-markers related to the health conditions, growth performance and meat quality. To profile the proteome in porcine plasma, blood samples were collected from 19 young piglets and 20 adult male barrows and the plasma was retrieved. Then, protein profiling was initiated using one and two-dimensional electrophoresis. Proteins were spotted and then identified by MALDI-TOF-TOF and LC-MS-MS. In the results, more than thirty-six and twenty eight protein spots were selected in young piglets and adult pigs, respectively and twenty three proteins were identified. The proteome profile images were compared between those ones using Image Master Version 7.0. The image of expressed proteome showed that most of proteins from plasma of young piglet separated clearly and concentrated in 2DE display compared to ones from adult. Image analysis in detail was carried out to look for the specific proteins related to age progression. It demonstrated that the characteristics of proteome expression could be distinct to their age stages. Further investigations needed to proceed to understand the age dependent change of protein conformation and biological meaning of those differences in proteome expression between young and mature adult pigs.

Altered Protein Expression in Peach (Prunus persica) Following Fruit Bagging

  • Zhang, Wei;Zhao, Xiaomeng;Shi, Mengya;Yang, Aizhen;Hua, Baoguang;Liu, Yueping
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.32-45
    • /
    • 2016
  • Fruit bagging has been widely practiced in peach cultivation to produce high quality and unblemished fruit. Moreover, fruit bagging has been utilized to study the effect of shading on the quality of fruit. We conducted a proteomic analysis on peach fruit to elucidate the biochemical and physiological events that characterize the effect of bagging treatment. Comparative analysis of 2D electrophoresis (2-DE) gels showed that relative protein levels differed significantly at 125 DAFB (days after full bloom), as well as at 133 DAFB in fruit that had been bagged until 125 DAFB, followed by exposure to sunlight. Most of the proteins with altered expression were identified by MALDI TOF/TOF. Twenty-one proteins with differential expression among the groups were identified at 125 DAFB, while thirty proteins with differential expression among the groups were identified at 133 DAFB. The analysis revealed that expression of proteins involved in photosynthesis, stress responses, and biochemical processes influencing metabolism were altered during bagging treatment, suggesting that regulation of the synthesis of carbohydrates, amino acids, and proteins influenced fruit size, solid/acid ratio, and peel color. This work provides the first characterization of proteomic changes in peach in response to fruit bagging treatment. Identifying and tracking protein changes may allow us to better understand the mechanisms underlying the effects of bagging treatment.