• 제목/요약/키워드: MAE(mean absolute error)

검색결과 196건 처리시간 0.021초

Data-driven prediction of compressive strength of FRP-confined concrete members: An application of machine learning models

  • Berradia, Mohammed;Azab, Marc;Ahmad, Zeeshan;Accouche, Oussama;Raza, Ali;Alashker, Yasser
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.515-535
    • /
    • 2022
  • The strength models for fiber-reinforced polymer (FRP)-confined normal strength concrete (NC) cylinders available in the literature have been suggested based on small databases using limited variables of such structural members portraying less accuracy. The artificial neural network (ANN) is an advanced technique for precisely predicting the response of composite structures by considering a large number of parameters. The main objective of the present investigation is to develop an ANN model for the axial strength of FRP-confined NC cylinders using various parameters to give the highest accuracy of the predictions. To secure this aim, a large experimental database of 313 FRP-confined NC cylinders has been constructed from previous research investigations. An evaluation of 33 different empirical strength models has been performed using various statistical parameters (root mean squared error RMSE, mean absolute error MAE, and coefficient of determination R2) over the developed database. Then, a new ANN model using the Group Method of Data Handling (GMDH) has been proposed based on the experimental database that portrayed the highest performance as compared with the previous models with R2=0.92, RMSE=0.27, and MAE=0.33. Therefore, the suggested ANN model can accurately capture the axial strength of FRP-confined NC cylinders that can be used for the further analysis and design of such members in the construction industry.

여름철 UAV 기반 LiDAR, SfM을 이용한 하천 DTM 생성 기법 비교 분석 (Comparative Analysis of DTM Generation Method for Stream Area Using UAV-Based LiDAR and SfM)

  • 고재준;이혁진;박진석;장성주;이종혁;김동우;송인홍
    • 한국농공학회논문집
    • /
    • 제66권3호
    • /
    • pp.1-14
    • /
    • 2024
  • Gaining an accurate 3D stream geometry has become feasible with Unmanned Aerial Vehicle (UAV), which is crucial for better understanding stream hydrodynamic processes. The objective of this study was to investigate series of filters to remove stream vegetation and propose the best method for generating Digital Terrain Models (DTMs) using UAV-based point clouds. A stream reach approximately 500 m of the Bokha stream in Icheon city was selected as the study area. Point clouds were obtained in August 1st, 2023, using Phantom 4 multispectral and Zenmuse L1 for Structure from Motion (SfM) and Light Detection And Ranging (LiDAR) respectively. Three vegetation filters, two morphological filters, and six composite filters which combined vegetation and morphological filters were applied in this study. The Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) were used to assess each filters comparing with the two cross-sections measured by leveling survey. The vegetation filters performed better in SfM, especially for short vegetation areas, while the morphological filters demonstrated superior performance on LiDAR, particularly for taller vegetation areas. Overall, the composite filters combining advantages of two types of filters performed better than single filter application. The best method was the combination of Progressive TIN (PTIN) and Color Indicies of Vegetation Extraction (CIVE) for SfM, showing the smallest MAE of 0.169 m. The proposed method in this study can be utilized for constructing DTMs of stream and thus contribute to improving the accuracy of stream hydrodynamic simulations.

앙상블 러닝 기반 동적 가중치 할당 모델을 통한 보험금 예측 인공지능 연구 (Research on Insurance Claim Prediction Using Ensemble Learning-Based Dynamic Weighted Allocation Model)

  • 최종석
    • 한국정보전자통신기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.221-228
    • /
    • 2024
  • 보험금 예측은 보험사의 리스크 관리와 재무 건전성 유지를 위한 핵심 과제 중 하나이다. 정확한 보험금 예측을 통해 보험사는 적정한 보험료를 책정하고, 예상 외의 손실을 줄이며, 고객 서비스의 질을 향상시킬 수 있다. 본 연구에서는 앙상블 러닝 기법을 적용하여 보험금 예측 모델의 성능을 향상시키고자 한다. 랜덤 포레스트(Random Forest), 그래디언트 부스팅 머신(Gradient Boosting Machine, GBM), XGBoost, Stacking, 그리고 제안한 동적 가중치 할당 모델(Dynamic Weighted Ensemble, DWE) 모델을 사용하여 예측 성능을 비교 분석하였다. 모델의 성능 평가는 평균 절대 오차(MAE), 평균 제곱근 오차(MSE), 결정 계수(R2) 등을 사용하여 수행되었다. 실험 결과, 동적 가중치 할당 모델이 평가 지표에서 가장 우수한 성능을 보였으며, 이는 랜덤 포레스트와 XGBoost, LR, LightGBM의 예측 결과를 결합하여 최적의 예측 성능을 도출한 결과이다. 본 연구는 앙상블 러닝 기법이 보험금 예측의 정확성을 높이는 데 효과적임을 입증하며, 보험업계에서 인공지능 기반 예측 모델의 활용 가능성을 제시한다.

협업 여과 기반의 교육용 컨텐츠 추천 시스템 설계 (The Educational Contents Recommendation System Design based on Collaborative Filtering Method)

  • 이용준;이세훈;왕창종
    • 컴퓨터교육학회논문지
    • /
    • 제6권2호
    • /
    • pp.147-156
    • /
    • 2003
  • 협업여과는 흥미 있어하는 제품이나 개인화된 자료, 항목을 제공하기 의해 전체 집단의 의견을 반영하는 전자상거래에서 일반적으로 이용되는 기술이다. 협업여과는 정확하고 신뢰할 수 있는 도구로 입증되어 여러 분야의 전자상거래 영역에서 활용되고 있으나 아직까지 교육분야에는 한정적으로 적용되고 있다. 본 논문에서는 교육용 컨텐츠 추천에 사용자의 평가 점수를 이용하는 협업여과 방식의 추천시스템을 설계하였으며, 사용자 정보를 이용하여 추천의 정확도를 향상시키기 위한 유사도 보정기법을 도입하였다. 평균절대오차(MAE)와 반응자작용특성(ROC)값을 이용하여 제안한 시스템이 기존의 협업여과방식보다 추천 효율이 우수함을 검증하였다.

  • PDF

Comparison of Wave Prediction and Performance Evaluation in Korea Waters based on Machine Learning

  • Heung Jin Park;Youn Joung Kang
    • 한국해양공학회지
    • /
    • 제38권1호
    • /
    • pp.18-29
    • /
    • 2024
  • Waves are a complex phenomenon in marine and coastal areas, and accurate wave prediction is essential for the safety and resource management of ships at sea. In this study, three types of machine learning techniques specialized in nonlinear data processing were used to predict the waves of Korea waters. An optimized algorithm for each area is presented for performance evaluation and comparison. The optimal parameters were determined by varying the window size, and the performance was evaluated by comparing the mean absolute error (MAE). All the models showed good results when the window size was 4 or 7 d, with the gated recurrent unit (GRU) performing well in all waters. The MAE results were within 0.161 m to 0.051 m for significant wave heights and 0.491 s to 0.272 s for periods. In addition, the GRU showed higher prediction accuracy for certain data with waves greater than 3 m or 8 s, which is likely due to the number of training parameters. When conducting marine and offshore research at new locations, the results presented in this study can help ensure safety and improve work efficiency. If additional wave-related data are obtained, more accurate wave predictions will be possible.

Deep Learning Framework with Convolutional Sequential Semantic Embedding for Mining High-Utility Itemsets and Top-N Recommendations

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • 제22권1호
    • /
    • pp.44-55
    • /
    • 2024
  • High-utility itemset mining (HUIM) is a dominant technology that enables enterprises to make real-time decisions, including supply chain management, customer segmentation, and business analytics. However, classical support value-driven Apriori solutions are confined and unable to meet real-time enterprise demands, especially for large amounts of input data. This study introduces a groundbreaking model for top-N high utility itemset mining in real-time enterprise applications. Unlike traditional Apriori-based solutions, the proposed convolutional sequential embedding metrics-driven cosine-similarity-based multilayer perception learning model leverages global and contextual features, including semantic attributes, for enhanced top-N recommendations over sequential transactions. The MATLAB-based simulations of the model on diverse datasets, demonstrated an impressive precision (0.5632), mean absolute error (MAE) (0.7610), hit rate (HR)@K (0.5720), and normalized discounted cumulative gain (NDCG)@K (0.4268). The average MAE across different datasets and latent dimensions was 0.608. Additionally, the model achieved remarkable cumulative accuracy and precision of 97.94% and 97.04% in performance, respectively, surpassing existing state-of-the-art models. This affirms the robustness and effectiveness of the proposed model in real-time enterprise scenarios.

Efficient CT Image Denoising Using Deformable Convolutional AutoEncoder Model

  • Eon Seung, Seong;Seong Hyun, Han;Ji Hye, Heo;Dong Hoon, Lim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권3호
    • /
    • pp.25-33
    • /
    • 2023
  • CT 영상의 획득 및 전송 등의 과정에서 발생하는 잡음은 영상의 질을 저하시키는 요소로 작용한다. 따라서 이를 해결하기 위한 잡음제거는 영상처리에서 중요한 전처리 과정이다. 본 논문에서는 딥러닝의 convolutional autoencoder (CAE) 모형에서 기존 컨볼루션 연산 대신 deformable 컨볼루션 연산을 적용한 deformable convolutional autoencoder (DeCAE) 모형을 이용하여 잡음을 제거하고자 한다. 여기서 deformable 컨볼루션 연산은 기존 컨볼루션 연산보다 유연한 영역에서 영상의 특징들을 추출할 수 있다. 제안된 DeCAE 모형은 기존 CAE 모형과 같은 인코더-디코더 구조로 되어있으나 효율적인 잡음제거를 위해 인코더는 deformable 컨볼루션 층으로 구성하고, 디코더는 기존 컨볼루션 층으로 구성하였다. 본 논문에서 제안된 DeCAE 모형의 성능 평가를 위해 다양한 잡음, 즉, 가우시안 잡음, 임펄스 잡음 그리고 포아송 잡음에 의해 훼손된 CT 영상을 대상으로 실험하였다. 성능 실험 결과, DeCAE 모형은 전통적인 필터 즉, Mean 필터, Median 필터와 이를 개선한 Bilateral 필터, NL-means 방법 뿐만 아니라 기존의 CAE 모형보다 정성적이고, 정량적인 척도 즉, MAE (Mean Absolute Error), PSNR (Peak Signal-to-Noise Ratio) 그리고 SSIM (Structural Similarity Index Measure) 면에서 우수한 결과를 보였다.

Estimation of BOD in wastewater treatment plant by using different ANN algorithms

  • BAKI, Osman Tugrul;ARAS, Egemen
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.455-462
    • /
    • 2018
  • The measurement and monitoring of the biochemical oxygen demand (BOD) play an important role in the planning and operation of wastewater treatment plants. The most basic method for determining biochemical oxygen demand is direct measurement. However, this method is both expensive and takes a long time. A five-day period is required to determine the biochemical oxygen demand. This study has been carried out in a wastewater treatment plant in Turkey (Hurma WWTP) in order to estimate the biochemical oxygen demand a shorter time and with a lower cost. Estimation was performed using artificial neural network (ANN) method. There are three different methods in the training of artificial neural networks, respectively, multi-layered (ML-ANN), teaching learning based algorithm (TLBO-ANN) and artificial bee colony algorithm (ABC-ANN). The input flow (Q), wastewater temperature (t), pH, chemical oxygen demand (COD), suspended sediment (SS), total phosphorus (tP), total nitrogen (tN), and electrical conductivity of wastewater (EC) are used as the input parameters to estimate the BOD. The root mean squared error (RMSE) and the mean absolute error (MAE) values were used in evaluating performance criteria for each model. As a result of the general evaluation, the ML-ANN method provided the best estimation results both training and test series with 0.8924 and 0.8442 determination coefficient, respectively.

Modeling of a Building System and its Parameter Identification

  • Park, Herie;Martaj, Nadia;Ruellan, Marie;Bennacer, Rachid;Monmasson, Eric
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.975-983
    • /
    • 2013
  • This study proposes a low order dynamic model of a building system in order to predict thermal behavior within a building and its energy consumption. The building system includes a thermally well-insulated room and an electric heater. It is modeled by a second order lumped RC thermal network based on the thermal-electrical analogy. In order to identify unknown parameters of the model, an experimental procedure is firstly detailed. Then, the different linear parametric models (ARMA, ARX, ARMAX, BJ, and OE models) are recalled. The parameters of the parametric models are obtained by the least square approach. The obtained parameters are interpreted to the parameters of the physically based model in accordance with their relationship. Afterwards, the obtained models are implemented in Matlab/Simulink(R) and are evaluated by the mean of the sum of absolute error (MAE) and the mean of the sum of square error (MSE) with the variable of indoor temperature of the room. Quantities of electrical energy and converted thermal energy are also compared. This study will permit a further study on Model Predictive Control adapting to the proposed model in order to reduce energy consumption of the building.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.