• Title/Summary/Keyword: MAC delay

Search Result 418, Processing Time 0.033 seconds

Delay Fairness of MAC Schemes for Best Effort Service in Wireless MAN (Wireless MAN에서 Best Effort 서비스를 위한 MAC 방식의 지연 공평성)

  • Park, Jin-Kyung;Shin, Woo-Cheol;Ha, Jun;Choi, Cheon-Won
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.168-171
    • /
    • 2003
  • IEEE 802.16 Wireless MAN standard specifies the air interface of fixed point-to-multipoint broadband wireless access systems providing multiple services. Among the service classes supported by the wireless MAN, the best effort service class is ranked on the lowest position in priority and is assisted by a MAC scheme based on reservation ALOHL Such MAC scheme must include a number of components, while many of them are not specified in the standard. In this paper, we thus reveal main components of a MAC scheme supporting the best effort service and present candidate schemes implementing such components. Combining schemes for implementing components, we then construct distinctive MAC schemes supporting best effort service. In designing a MAC scheme, the delay performance induced by the scheme should be considered since scarce resource may be available for the best effort service after the preemptive resource occupation by other service classes. In this paper, we focus on the delay fairness among the subscriber stations using the best effort service. For evaluating a MAC scheme in delay fairness, we present two definitions of delay fairness and provide a criterion for optimal MAC scheme according to each definition of delay fairness. Using a simulation method we investigate the mean delay performance exhibited by each MAC scheme arid find an optimal scheme in delay fairness. From numerical examples, we observe that SR/ED/PG+P scheme has strong delay fairness compared with MR/ED/PG+P and SR/ED/PG+D schemes according to a definition of delay fairness. However, other schemes are rather shown to have better delay fairness when the other definition is adopted.

  • PDF

MAC Algorithm of Sensor Networks to Service System (서비스 시스템에 따른 센서네트워크 MAC 알고리즘)

  • Park, Woo-Chool;Cho, Soo-Hyung;Lee, Sang-Hak;Kim, Dae-Whan;Yoo, June-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.225-227
    • /
    • 2004
  • A sensor networkis composed of a large number of sensor nodes, which are densely deployed either inside the phenomenon or very close to it. One of the most important constraints on sensor nodes is the low power consumption requirement. Sensor nodes carry limited, generally irreplaceable, power sources. Therefore, while traditional networks aim to achieve high quality of service (QoS) provisions, sensor network protocols must focus primarily on power conservation. This paper presents the characteristics of energy consuming, average delay in 802.11 MAC, S-MAC that is specifically designed for wireless sensor networks. We analyze the energy consuming state in the 802.11 MAC in the simulation topology nodes, and measure average delay in 802.11 and S-MAC. Energy efficiency is the primary goal in this protocol design. 802.11 MAC is more efficient than S-MAC in the average delay, throughput. However S-MAC is an energy efficient protocol, a tradeoff between energy efficiency and delay.

  • PDF

A Delay Efficient and Bursty Traffics Friendly MAC Protocol in Wireless Sensor Networks (무선 센서 네트워크에서 지연과 버스티 트래픽에 적합한 MAC 프로토콜)

  • Kim, Hye Yun;Kim, Seong Cheol
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.254-260
    • /
    • 2017
  • Data packets from sensor nodes scattered over measuring fields are generally forwarding to the sink node, which may be connected to the wired networks, in a wireless sensor network. So many data packets are gathered near the sink node, resulting in significant data packet collisions and severe transmission latency. In an event detection application such as object tracking and military, bursty data is generated when an event occurs. So many data packet should be transmitted in a limited time to the sink node. In this paper, we present a delay efficient and bursty traffic friendly MAC protocol called DEBF-MAC protocol for wireless sensor networks. The DEBF-MAC uses a slot-reserved mechanism and sleep period control method to send multiple data packets efficiently in an operational cycle time. Our simulation results show that DEBF-MAC outperforms DW-MAC and SR-MAC in terms of energy consumption and transmission delay.

Packet Delay and Energy Consumption of S-MAC Protocol in Single-Hop Wireless Sensor Network (단일 홉 무선 센서 네트워크에서 S-MAC 프로토콜의 패킷 지연 및 에너지 소비)

  • Sung, Seok-Jin;Woo, Seok;Kim, Chung-San;Kim, Ki-Seon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.53-54
    • /
    • 2006
  • In this paper, we analytically evaluate packet delay and energy consumption of S-MAC protocol with a modified Markov chain model. Although some models, based on IEEE 802.11 MAC protocol, to analyze the S-MAC protocol in wireless sensor network (WSN) have been proposed, they fail to consider the differences in architecture between the S-MAC and the 802.11 MAC. Therefore, by reflecting the significant features in the S-MAC function, we model the operation of S-MAC protocol, and derive its packet delay and energy consumption in single-hop WSN. Numerical results show the delay and the dissipated energy at various duty cycle values according to offered load, where a practical mote is used.

  • PDF

Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

  • Kim, Jae-Hyun;Kim, Seog-Gyu;Lee, Jai-Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.105-122
    • /
    • 2011
  • The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay.

Design of Energy Efficient MAC Protocol for Delay Sensitive Application over Wireless Sensor Network (무선 센서 네트워크상에서 시간지연에 민감한 데이터 전송을 위한 에너지 효율적인 MAC 프로토콜 설계)

  • Oh, Hyung-Rai;Song, Hwang-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1169-1177
    • /
    • 2009
  • This paper presents an energy efficient MAC protocol for delay-sensitive data transmission over wireless sensor network. In general, energy consumption and delay depend on Channel Monitoring Interval and data sensing period at each sensor node. Based on this fact, we propose a new preamble structure to effectively advertise Channel Monitoring Interval and avoid the overhearing problem. In order to pursue an effective tradeoff between energy consumption and delay, we also develop a Channel Monitoring Interval determining algorithm that searches for a sub-optimal solution with a low computational complexity. Finally, experimental results are provided to compare the proposed MAC protocol with existing sensor MAC protocols.

A Low-Delay MAC(LD-MAC) protocol in Multi-Hop Wireless Sensor Networks (멀티 홉 무선 센서 네트워크에서 저 지연을 지원하는 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.452-458
    • /
    • 2014
  • In Wireless Sensor Networks the Medium access control (MAC) protocol has many challenges to solve such as reducing energy consumption, supporting QoS(quality of service) fairness, and reducing delivery delay. This paper proposed a low-delay supporting MAC protocol in multi-hop Wireless Sensor Networks. The proposed protocol uses the RB(rapid beacon) frame for reducing delivery delay. The RB frame is a modified IEEE 802.15.4 beacon frame. For sender adaptive-wakeup, the RB frame includes a seed number for determining of a receiver wakeup time. And for next hop receiver adaptive-wakeup, the RB frame includes the length of remaining data packet information. Results showed that our LD-MAC protocol outperformed other protocol in terms of data packet delivery delay.

LTE Base Station Power Saving Mechanism using Delay Information (Delay 정보를 이용한 LTE 기지국의 Power Saving 메커니즘)

  • Lee, Seung-Hwan;Rhee, Seung-Hyong;Choi, Yong-Hoon;Park, Su-Won
    • Journal of KIISE:Information Networking
    • /
    • v.37 no.3
    • /
    • pp.243-248
    • /
    • 2010
  • This thesis proposes a power saving MAC protocol for LTE base station which utilizes different graded DRX/DTX(Discontinuous. Reception/Transmission) that specified by 3GPP(Third Generation Partnership Project). Considering QoS in UE, proposed MAC protocol controls adaptive DRX/DTX cycle. When Packet delay of UE is less than normal time, LTE base station economize power by increasing DRX/DTX. When Packet delay of UE is more than normal time, delay of UE is decreased by guaranteed QoS. It depends on the traffic which is sent by UE. The proposed method is more improve power saving performance than another method which is unchanged DRX/DTX by conditions. Especially when set DRX/DTX up in conditions, it will meet the requirements of UE. In this thesis, I propose an power saving MAC protocol in an environment where LTE base station are communicated with UE and prove improvement in performance through simulations.

An MAC Protocol Design in Minimizing of Data Transmission Delay for Wireless Sensor Networks (센서 네트워크에서 데이타 전송 지연을 최소화하는 MAC 프로토콜의 설계)

  • Kim, Man-Seok;Kim, Sang-Soo;Koh, Kwang-Shin;Cho, Gi-Hwan;Lee, Moon-Ho
    • Journal of Internet Computing and Services
    • /
    • v.8 no.2
    • /
    • pp.43-54
    • /
    • 2007
  • The effective power consumption is the primary issue in a sensor network which consists of the sensor nodes with limited battery power. So, most of the MAC protocols in sensor networks have been designed with the consideration of energy efficiency. Generally, these protocols make use of the listen and sleep mode periodically. However, this approach inevitably causes a long transmission delay on the data forwarding path, which is mainly resulted from the sleep time of the receiver node. This paper deals with a design of DT-MAC(Data Transmission centric MAC) protocol, with minimizes the data transmission delay while it forces each node to consume its energy efficiently. Thus, a node received a packet converts its remained sleep time to the pseudo_listen time, in which the node is able to transmit a packet. With benefit of the pseudo_listen period, the data transmission delay along with the data forwarding path will be shortened as much as it possible. Therefore, DT-MAC protocol is very suitable to the various applications which require a real time sensing data such as disaster and fire alarm.

  • PDF

MAC Layer Protocol for Improvement in Power Consumption and Time Delay in a Sensor Network (센서 네트워크에서 전력소모와 지연시간 개선을 위한 MAC 계층 프로토콜 연구)

  • Shin, Jae Kwan;Park, Dong Chan;Kim, Suk Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.366-368
    • /
    • 2015
  • This paper proposes a MAC protocol for sensor networks such as disaster detection system which generate the non-periodic packet. B-MAC has been used to solve delay problem for sensor networks, however, the power loss occurs due to excessive preamble and over-hearing. In contrast, S-MAC has a number of drawbacks in power consumption due to synchronization. In this paper, we propose H-MAC and analyze its performance which has improved power consumption compared to S-MAC and overhead and over-hearing compared to B-MAC.