• Title/Summary/Keyword: MAC(Medium Access Control)

Search Result 360, Processing Time 0.022 seconds

An MAC Protocol based on Code Status Sensing and Acquisition Indication in CDMA Networks

  • Lim, In-Taek
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.181-184
    • /
    • 2007
  • In this paper, a CSSMA/AI MAC protocol in packet CDMA network is presented. The main features of this protocol are the code status sensing and reservation for reducing the packet collision. The base station broadcasts the code status on a frame-by-frame basis just before the beginning of each preamble transmission, and the mobile station transmits a preamble for reserving a code based on the received code status. After having transmitted the preamble, the mobile station listens to the downlink of the selected code and waits the base station reply. If this reply indicates that the code has been correctly acquired, it continues the packet transmission for the rest of the frame. If there are other packets waiting for transmission, the base station broadcasts the status of the code as reserved, and the mobile station transmits a packet on a reserved code for the successive frames.

Adaptive Cross-Layer Packet Scheduling Method for Multimedia Services in Wireless Personal Area Networks

  • Kim Sung-Won;Kim Byung-Seo
    • Journal of Communications and Networks
    • /
    • v.8 no.3
    • /
    • pp.297-305
    • /
    • 2006
  • High-rate wireless personal area network (HR-WPAN) has been standardized by the IEEE 802.15.3 task group (TG). To support multimedia services, the IEEE 802.15.3 TG adopts a time-slotted medium access control (MAC) protocol controlled by a central device. In the time division multiple access (TDMA)-based wireless packet networks, the packet scheduling algorithm plays a key role in quality of service (QoS) provisioning for multimedia services. In this paper, we propose an adaptive cross-layer packet scheduling method for the TDMA-based HR-WPAN. Physical channel conditions, MAC protocol, link layer status, random traffic arrival, and QoS requirement are taken into consideration by the proposed packet scheduling method. Performance evaluations are carried out through extensive simulations and significant performance enhancements are observed. Furthermore, the performance of the proposed scheme remains stable regardless of the variable system parameters such as the number of devices (DEVs) and delay bound.

A Scheduling Algorithm of AP for Alleviating Unfairness Property of Upstream-Downstream TCP Flows in Wireless LAN (무선 랜에서의 상.하향 TCP 플로우 공평성 제고를 위한 AP의 스케쥴링 알고리즘 연구)

  • Lim, Do-Hyun;Seok, Seung-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.11
    • /
    • pp.1521-1529
    • /
    • 2009
  • There is a serious unfairness problem between upstream and downstream flows of AP in IEEE 802.11 Wireless LAN. This problem is because Wireless LAN's DCF MAC protocol provides AP with equal channel access priority to mobile noded. Also, it makes this problem worse that the TCP's Data segment loss is more effective on throughput than the TCP's ACK segment. In this paper, we first make several simulations to analysis the unfairness in the various point of view and to find reasons of the unfairness. Also, this paper presents AP's scheduling scheme to alleviate the unfairness problem and evaluate the scheme through ns2 simulator.

  • PDF

A Fair Distributed Resource Allocation Method in UWB Wireless PANs with WiMedia MAC

  • Kim, Seok-Hwan;Hur, Kyeong;Park, Jong-Sun;Eom, Doo-Seop;Hwang, Kwang-Il
    • Journal of Communications and Networks
    • /
    • v.11 no.4
    • /
    • pp.375-383
    • /
    • 2009
  • The WiMedia alliance has specified a distributed medium access control (WiMedia MAC) protocol based on ultra wideband (UWB) for high data rate WPANs (HR-WPANs). The merits of WiMedia MAC such as distributed nature and high data rate make it a favorite candidate in HR-WPAN. Although QoS parameters such as the range of service rates are provided to a traffic stream, the WiMedia MAC is not able to use the QoS parameters and to determine or adjust a service rate using the QoS parameters for the traffic stream. In this paper, we propose a fair and adaptive resource allocation method that allocates time slots to isochronous streams according to QoS parameters and the current traffic load condition in a fully distributed manner. Although the traffic load condition changes, each device independently recognizes the changes and calculates fair and maximum allowable service rates for traffic streams. From the numerical and simulation results, it is proved that the proposed method achieves high capacity of traffic streams and fair QoS provisioning under various traffic load condition.

A Congestion Control Scheme Using Duty-Cycle Adjustment in Wireless Sensor Networks (무선 센서 네트워크에서 듀티사이클 조절을 통한 혼잡 제어 기법)

  • Lee, Dong-Ho;Chung, Kwang-Sue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1B
    • /
    • pp.154-161
    • /
    • 2010
  • In wireless sensor networks, due to the many-to-one convergence of upstream traffic, congestion more probably appears. The existing congestion control protocols avoid congestion by controlling incoming traffic, but the duty-cycle operation of MAC(Medium Access Control) layer has not considered. In this paper, we propose DCA(Duty-cycle Based Congestion Avoidance), an energy efficient congestion control scheme using duty-cycle adjustment for wireless sensor networks. The DCA scheme uses both a resource control approach by increasing the packet reception rate of the receiving node and a traffic control approach by decreasing the packet transmission rate of the sending node for the congestion avoidance. Our results show that the DCA operates energy efficiently and achieves reliability by its congestion control scheme in duty-cycled wireless sensor networks.

Analysis of Channel Access Delay in CR-MAC Protocol for Ad Hoc Cognitive Radio Wireless Sensor Networks without a Common Control Channel

  • Joshi, Gyanendra Prasad;Nam, Seung Yeob;Acharya, Srijana;Kim, Sung Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.911-923
    • /
    • 2014
  • Ad hoc cognitive radio wireless sensor networks allow secondary wireless sensor nodes to recognize spectrum opportunities and transmit data. Most existing protocols proposed for ad hoc cognitive radio wireless sensor networks require a dedicated common control channel. Allocating one channel just for control packet exchange is a waste of resources for channel-constrained networks. There are very few protocols that do not rely on a common control channel and that exchange channel-negotiation control packets during a pre-allocated time on the data channels. This, however, can require a substantial amount of time to access the channel when an incumbent is present on the channel, where the nodes are intended to negotiate for the data channel. This study examined channel access delay on cognitive radio wireless sensor networks that have no dedicated common control channel.

Research on Anti-Reader Collision Protocols for Integrated RFID-WSNs

  • Ko, Doo-Hyun;Kim, Bum-Jin;An, Sun-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.776-796
    • /
    • 2010
  • Integrated RFID-WSNs (wireless sensor networks) have recently been researched to provide object identities, sensing information, mobile service, and network functionalities. In integrated RFID-WSNs, the reader collision is one of the critical problems. Above all, due to the absence of universally applicable anti-collision protocols and the channel capture phenomenon, the medium access control protocols in integrated RFID-WSNs suffer from reader collision and starvation problems. In this paper, we propose an efficient MAC protocol, called EMP, to avoid the above problems in integrated RFID-WSNs. EMP is a CSMA-based MAC protocol which is compatible with sensor networks operating on integrated nodes which consist of an RFID reader and a senor node. EMP resolves not only the reader collision problem, but also the starvation problem using a power control mechanism. To verify the performance of EMP, we compared it with other anti-reader collision MAC protocols using simulations. As a result, the performance of EMP showed improvements in throughput, system efficiency, and energy consumption compared to the single data channel protocols (CSMA/CA, Pulse, and DiCa) in dense deployment environments.

A Cluster-based Countermeasure against Media Access Control Layer Attacks in IEEE 802.11 Ad Hoc Networks

  • Shi, Fei;Song, Joo-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1565-1585
    • /
    • 2012
  • The characteristics of ad hoc networks, such as the absence of infrastructure, a dynamic topology, a shared wireless medium and a resource-constrained environment pose various security challenges. Most previous studies focused on the detection of misbehavior after it had occurred. However, in this paper we propose a new way of thinking to evade the occurrence of misbehavior. In our scheme, we firstly present a clustering algorithm that employs a powerful analytic hierarchy process methodology to elect a clusterhead for each cluster. The clusterhead in each cluster is then allowed to assign the backoff values to its members, i.e., originators, rather than permitting the originators to choose the backoff values by themselves. Through this media access control layer misbehavior detection mechanism, the misuse of the backoff in the media access control layer in the 802.11 distributed coordination function can be detected.

An Energy Efficient Multichannel MAC Protocol for QoS Provisioning in MANETs

  • Kamruzzaman, S.M.;Hamid, Md. Abdul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.684-702
    • /
    • 2011
  • This paper proposes a TDMA-based multichannel medium access control (MAC) protocol for QoS provisioning in mobile ad hoc networks (MANETs) that enables nodes to transmit their packets in distributed channels. The IEEE 802.11 standard supports multichannel operation at the physical (PHY) layer but its MAC protocol is designed only for a single channel. The single channel MAC protocol does not work well in multichannel environment because of the multichannel hidden terminal problem. Our proposed protocol enables nodes to utilize multiple channels by switching channels dynamically, thus increasing network throughput. Although each node of this protocol is equipped with only a single transceiver but it solves the multichannel hidden terminal problem using temporal synchronization. The proposed energy efficient multichannel MAC (EM-MAC) protocol takes the advantage of both multiple channels and TDMA, and achieves aggressive power savings by allowing nodes that are not involved in communications to go into power saving "sleep mode". We consider the problem of providing QoS guarantee to nodes as well as to maintain the most efficient use of scarce bandwidth resources. Our scheme improves network throughput and lifetime significantly, especially when the network is highly congested. The simulation results show that our proposed scheme successfully exploits multiple channels and significantly improves network performance by providing QoS guarantee in MANETs.

SoQ-based Relay Transmission Protocol for Wireless USB over WiMedia D-MAC (WiMedia D-MAC 기반 Wireless USB 시스템을 위한 SoQ-based 릴레이 통신 프로토콜)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1324-1329
    • /
    • 2013
  • The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC) protocol based on UWB for high speed wireless home networks and WPANs. In this paper, firstly, the fair SoQ-based Distributed Reservation Protocol (DRP) for D-MAC is analyzed. And a novel SoQ-based relay transmission protocol is proposed to overcome DRP conflicts fast. In the proposed protocol, each device executes the Satisfaction of QoS (SoQ) time slot allocation algorithm independently. And, in order to give the loser device due to DRP conflicts another chance to maintain QoS resources, the proposed relay transmission protocol helps the device reserve another indirect link maintaining the required QoS resources via a relay node.