A Congestion Control Scheme Using Duty-Cycle Adjustment in Wireless Sensor Networks

무선 센서 네트워크에서 듀티사이클 조절을 통한 혼잡 제어 기법

  • 이동호 (광운대학교 전자통신공학과 컴퓨터통신 연구실) ;
  • 정광수 (광운대학교 전자통신공학과 컴퓨터통신 연구실)
  • Published : 2010.01.31

Abstract

In wireless sensor networks, due to the many-to-one convergence of upstream traffic, congestion more probably appears. The existing congestion control protocols avoid congestion by controlling incoming traffic, but the duty-cycle operation of MAC(Medium Access Control) layer has not considered. In this paper, we propose DCA(Duty-cycle Based Congestion Avoidance), an energy efficient congestion control scheme using duty-cycle adjustment for wireless sensor networks. The DCA scheme uses both a resource control approach by increasing the packet reception rate of the receiving node and a traffic control approach by decreasing the packet transmission rate of the sending node for the congestion avoidance. Our results show that the DCA operates energy efficiently and achieves reliability by its congestion control scheme in duty-cycled wireless sensor networks.

무선 센서 네트워크에서는 다대일로 수렴하는 상향 트래픽의 특성으로 인해 네트워크의 혼잡이 빈번히 발생한다. 기존에 제안된 무선 센서 네트워크의 혼잡 제어 기법은 혼잡 발생 시 전송 주기 변경을 통해 혼잡을 회피할 수 있으나 MAC(Medium Access Control) 계층의 듀티사이클 동작에 대한 고려가 부족하였다. 본 논문에서는 무선 센서 네트워크의 혼잡 제어를 위하여 네트워크의 트래픽에 따라 센서 노드의 듀티사이클을 적응적으로 변화시키는 DCA(Duty-cycle Based Congestion Avoidance) 기법을 제안하였다. DCA 기법은 듀티사이클 조절을 이용하여 혼잡 발생 시 수신 노드의 패킷 수신율 증가를 통한 리소스 제어를 수행하고 송신 노드의 패킷 전송률 감소인 트래픽 제어를 수행하여 혼잡을 회피한다. 실험을 통해 DCA 기법은 듀티사이클 기반의 센서 네트워크에서 에너지 효율성으로 동작하며 혼잡 제어로 인해 신뢰성을 향상시킬 수 있음을 확인하였다.

Keywords

References

  1. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A Survey on Sensor Networks," IEEE Communication Magazine, Vol.40, No.8, pp.104-112, August 2002.
  2. C. Wang, K. Sohraby, V. Lawrence, B. Li, and Y. Hu, "Priority-based Congestion Control in Wireless Sensor Networks," IEEE SUTC'06, Vol.1, pp.22-31, June 2006.
  3. Y. Sankarasubramaniam, O. Akan, and I. Akyildiz, "ESRT: Event-to-sink Reliable Transportin Wireless Sensor Networks," ACM MOBIHOC'03, pp.177-188, June 2003.
  4. J. Kang, Y. Zhang, and B. Nath, "TARA: Topology-Aware Resource Adaptation to Alleviate Congestion in Sensor Networks," IEEE Transaction on Parallel and Distributed System, Vol.18, issue. 7, pp.919-931, July 2007.
  5. Y. Iyer, S. Gandham, and S. Venkatesan, "STCP: A Generic Transport Layer Protocol for Wireless Sensor Networks," IEEE ICCCN'05, pp.449-454, October 2005.
  6. T. He, F. Ren, C. Lin, and S. Das, "Alleviating Congestion Using Traffic-Aware dynamic Routing in Wireless Sensor Networks," IEEE SECON'08, pp.233-241, June 2008.
  7. W. Ye, J. Heidemann, and D. Estrin, "Medium Access Control with Coordinated Adaptive Sleeping for Wireless Sensor Networks," IEEE/ACM Transaction on Networking, Vol.12, No.3, pp.493-506, June 2004. https://doi.org/10.1109/TNET.2004.828953
  8. T. Dam and K. Langendoen, "An Adaptive Energy-Efficient MAC Procotol for Wireless Sensor Networks," ACM SENSYS'03, pp.171-180, November 2003.
  9. G. Lu, B. Krishnamachari, and C. Raghavendra, "An Adaptive Energy-Efficient and Low-Latency MAC for Data Gathering in Wireless Sensor Networks," IEEE IPDPS'04, pp.224-231, April 2004.
  10. J. Polastre, J. Hill, and D. Culler, "Versatile Low Power Media Access for Wireless Sensor Networks," ACM SENSYS'04, pp.95-107, November 2004.
  11. A. El-Hoiydi and J. Decotignie, "WiseMAC: An Ultra Low Power MAC Protocol for the Downlink of Infrastructure Wireless Sensor Networks," IEEE ISCC'04, Vol.1, pp.244-251, June 2004.
  12. B. Jang, J. Lim, and M. Sichitiu, "AS-MAC: An Asynchronous Scheduled MAC Protocol for Wireless Sensor Networks," IEEE MASS'08, pp.434-441, September 2008.
  13. J. Kang, Y. Zhang, and B. Nath, "Analysis of Resource Increase and Decrease Algorithm in Wireless Sensor Networks," IEEE ISCC '06, pp.585-590, June 2006.
  14. The Network Simulator ns-2, http://www.isi.edu/nsnam/ns/.