• Title/Summary/Keyword: MA parameters

Search Result 289, Processing Time 0.019 seconds

High Density Lipoprotein from Egg Yolk (EYHDL) Improves Dyslipidemia by Mediating Fatty Acids Metabolism in High Fat Diet-induced Obese Mice

  • Yu, Zhihui;Mao, Changyi;Fu, Xing;Ma, Meihu
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.179-196
    • /
    • 2019
  • We investigated the effect of high density lipoprotein from egg yolk (EYHDL) on serum, hepatic and fecal lipid and fatty acids (FAs) levels and on gene expression involved in FAs metabolism. Male KM mice were fed either normal diet (ND; n=20), high fat diet (HFD; n=20), or high fat diet containing EYHDL (EYHDL; 0.6 mg/g, every day by oral gavage, n=20) for 100 days. At the end of the experiment, the effects of treatments on biochemical parameters, FAs profiles and involved gene expression were analyzed. Our results revealed that EYHDL markedly suppressed the body weight gain, accumulation of abdominal fat tissues, serum concentrations of LDL-cholesterol (LDL-C) and triglycerides, hepatic triglycerides and cholesterol accumulation, while increased serum concentration of HDL-cholesterol (HDL-C). EYHDL intake also increased total cholesterol (TC) excretions compared with HFD group. Moreover, it alleviated the severity of fatty liver and improved glucose and insulin tolerance compared with HFD. More importantly, EYHDL partially normalized FAs profiles in serum, liver and fecaces and neutralized the HFD-induced upregulation of SREBP-1c, Acaca, Fasn, GPAT and Scd1. In conclusion, our findings indicate that EYHDL may have the potential to improve metabolic disturbances that occur in HFD mice and can be considered as an appropriate dietary recommendation for the treatment of metabolic syndrome (MetS).

Field test and research on shield cutting pile penetrating cement soil single pile composite foundation

  • Ma, Shi-ju;Li, Ming-yu;Guo, Yuan-cheng;Safaei, Babak
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.513-521
    • /
    • 2020
  • In this paper, due to the need for cutting cement-soil group pile composite foundation under the 7-story masonry structure of Zhenghe District and the shield tunnel of Zhengzhou Metro Line 5, a field test was conducted to directly cut cement-soil single pile composite foundation with diameter Ф=500 mm. Research results showed that the load transfer mechanism of composite foundation was not changed before and after shield tunnel cut the pile, and pile body and the soil between piles was still responsible for overburden load. The construction disturbance of shield cutting pile is a complicated mechanical process. The load carried by the original pile body was affected by the disturbance effect of pile cutting construction. Also, the fraction of the load carried by the original pile body was transferred to the soil between the piles and therefore, the bearing capacity of composite foundation was not decreased. Only the fractions of the load carried by pile and the soil between piles were distributed. On-site monitoring results showed that the settlement of pressure-bearing plates produced during shield cutting stage accounted for about 7% of total settlement. After the completion of pile cutting, the settlements of bearing plates generated by shield machine during residual pile composite foundation stage and shield machine tail were far away from residual pile composite foundation stage which accounted for about 15% and 74% of total settlement, respectively. In order to reduce the impact of shield cutting pile construction on the settlement of upper composite foundation, it was recommended to take measures such as optimization of shield construction parameters, radial grouting reinforcement and "clay shock" grouting within the disturbance range of shield cutting pile construction. Before pile cutting, the pile-soil stress ratio n of composite foundation was 2.437. After the shield cut pile is completed, the soil around the lining structure is gradually consolidated and reshaped, and residual pile composite foundation reaches a new state of force balance. This was because the condensation of grouting layer could increase the resistance of remaining pile end and friction resistance of the side of the pile.

Single-Center Clinical Analysis of Traumatic Thoracic Aortic Injuries: A Retrospective Observational Study

  • Ma, Dae Sung;Jeon, Yang Bin
    • Journal of Trauma and Injury
    • /
    • v.34 no.2
    • /
    • pp.81-86
    • /
    • 2021
  • Purpose: This study investigated the clinical outcomes of trauma patients with blunt thoracic aortic injuries at a single institution. Methods: During the study period, 9,501 patients with traumatic aortic injuries presented to Trauma Center of Gil Medical Center. Among them, 1,594 patients had severe trauma, with an Injury Severity Score (ISS) of >15. Demographics, physiological data, injury mechanism, hemodynamic parameters associated with the thoracic injury according to chest computed tomography (CT) findings, the timing of the intervention, and clinical outcomes were reviewed. Results: Twenty-eight patients had blunt aortic injuries (75% male, mean age, 45.9±16.3 years). The majority (82.1%, n=23/28) of these patients were involved in traffic accidents. The median ISS was 35.0 (interquartile range 21.0-41.0). The injuries were found in the ascending aorta (n=1, 3.6%) aortic arch (n=8, 28.6%) aortic isthmus (n=18, 64.3%), and descending aorta (n=1, 3.6%). The severity of aortic injuries on chest CT was categorized as intramural hematoma (n=1, 3.6%), dissection (n=3, 10.7%), transection (n=9, 32.2%), pseudoaneurysm (n=12, 42.8%), and rupture (n=3, 10.7%). Endovascular repair was performed in 71.4% of patients (45% within 24 hours), and two patients received surgical management. The mortality rate was 25% (n=7). Conclusions: Traumatic thoracic aortic injuries are life-threatening. In our experience, however, if there is no rupture and extravasation from an aortic injury, resuscitation and stabilization of vital signs are more important than an intervention for an aortic injury in patients with multiple traumas. Further study is required to optimize the timing of the intervention and explore management strategies for blunt thoracic aortic injuries in severe trauma patients needing resuscitation.

Movie Recommendation System based on Latent Factor Model (잠재요인 모델 기반 영화 추천 시스템)

  • Ma, Chen;Kim, Kang-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.125-134
    • /
    • 2021
  • With the rapid development of the film industry, the number of films is significantly increasing and movie recommendation system can help user to predict the preferences of users based on their past behavior or feedback. This paper proposes a movie recommendation system based on the latent factor model with the adjustment of mean and bias in rating. Singular value decomposition is used to decompose the rating matrix and stochastic gradient descent is used to optimize the parameters for least-square loss function. And root mean square error is used to evaluate the performance of the proposed system. We implement the proposed system with Surprise package. The simulation results shows that root mean square error is 0.671 and the proposed system has good performance compared to other papers.

Periparturient stocking density affects lying and ruminating behavior and one-week-calf performance of Holstein cows

  • Jiang, Mingming;Alugongo, Gibson Maswayi;Xiao, Jianxin;Li, Congcong;Ma, Yulin;Li, Tingting;Cao, Zhijun;Liu, Dasen
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.759-769
    • /
    • 2021
  • Objective: This study aimed to investigate the effect of stocking density on the behavior, productivity, and metabolism of periparturient Holstein cows as well as calf performance. Methods: A total of 48 periparturient cows were randomly assigned into three groups at 28 days (±3 days) before their expected calving date. The stocking densities of the groups, relative to the standard cubicle and feed bunk number, were i) 80% (13 cows), ii) 100% (16 cows), and iii) 120% (19 cows). Lying and rumination behavior was recorded using electronic data loggers and HR-Tags from d -21 ("d-" means days before calving) until the calving date, d 0. Lying time was assessed to determine the diurnal total hours spent lying per day. Rumination time was averaged in 2 hours interval periods over 24 hours during the experimental period. Results: Cows in the 80% group spent more time lying and ruminating between d -21 and d -7 and tended to ruminate more between d -14 and d 0. Calcium levels tended to be higher for cows in the 80% group, no other observable differences were found in monitored blood parameters. Moreover, 3.5% fat corrected milk and energy corrected milk yields were higher in 80% group in the first month of lactation. No other observable differences were found in the yield and composition of colostrum and milk in the first 10 months of lactation. The growth and performance of calves in the first week of life was not affected by stocking density of the dams. Conclusion: We concluded that lower stocking density may increase lying and ruminating behavior of prepartum Holstein cows. However, this did not translate into improved productivity and metabolism.

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

Impact-resistant design of RC slabs in nuclear power plant buildings

  • Li, Z.C.;Jia, P.C.;Jia, J.Y.;Wu, H.;Ma, L.L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3745-3765
    • /
    • 2022
  • The concrete structures related to nuclear safety are threatened by accidental impact loadings, mainly including the low-velocity drop-weight impact (e.g., spent fuel cask and assembly, etc. with the velocity less than 20 m/s) and high-speed projectile impact (e.g., steel pipe, valve, turbine bucket, etc. with the velocity higher than 20 m/s), while the existing studies are still limited in the impact resistant design of nuclear power plant (NPP), especially the primary RC slab. This paper aims to propose the numerical simulation and theoretical approaches to assist the impact-resistant design of RC slab in NPP. Firstly, the continuous surface cap (CSC) model parameters for concrete with the compressive strength of 20-70 MPa are fully calibrated and verified, and the refined numerical simulation approach is proposed. Secondly, the two-degree freedom (TDOF) model with considering the mutual effect of flexural and shear resistance of RC slab are developed. Furthermore, based on the low-velocity drop hammer tests and high-speed soft/hard projectile impact tests on RC slabs, the adopted numerical simulation and TDOF model approaches are fully validated by the flexural and punching shear damage, deflection, and impact force time-histories of RC slabs. Finally, as for the two low-velocity impact scenarios, the design procedure of RC slab based on TDOF model is validated and recommended. Meanwhile, as for the four actual high-speed impact scenarios, the impact-resistant design specification in Chinese code NB/T 20012-2019 is evaluated, the over conservation of which is found, and the proposed numerical approach is recommended. The present work could beneficially guide the impact-resistant design and safety assessment of NPPs against the accidental impact loadings.

Efficient influence of cross section shape on the mechanical and economic properties of concrete canvas and CFRP reinforced columns management using metaheuristic optimization algorithms

  • Ge, Genwang;Liu, Yingzi;Al-Tamimi, Haneen M.;Pourrostam, Towhid;Zhang, Xian;Ali, H. Elhosiny;Jan, Amin;Salameh, Anas A.
    • Computers and Concrete
    • /
    • v.29 no.6
    • /
    • pp.375-391
    • /
    • 2022
  • This paper examined the impact of the cross-sectional structure on the structural results under different loading conditions of reinforced concrete (RC) members' management limited in Carbon Fiber Reinforced Polymers (CFRP). The mechanical properties of CFRC was investigated, then, totally 32 samples were examined. Test parameters included the cross-sectional shape as square, rectangular and circular with two various aspect rates and loading statues. The loading involved concentrated loading, eccentric loading with a ratio of 0.46 to 0.6 and pure bending. The results of the test revealed that the CFRP increased ductility and load during concentrated processing. A cross sectional shape from 23 to 44 percent was increased in load capacity and from 250 to 350 percent increase in axial deformation in rectangular and circular sections respectively, affecting greatly the accomplishment of load capacity and ductility of the concentrated members. Two Artificial Intelligence Models as Extreme Learning Machine (ELM) and Particle Swarm Optimization (PSO) were used to estimating the tensile and flexural strength of specimen. On the basis of the performance from RMSE and RSQR, C-Shape CFRC was greater tensile and flexural strength than any other FRP composite design. Because of the mechanical anchorage into the matrix, C-shaped CFRCC was noted to have greater fiber-matrix interfacial adhesive strength. However, with the increase of the aspect ratio and fiber volume fraction, the compressive strength of CFRCC was reduced. This possibly was due to the fact that during the blending of each fiber, the volume of air input was increased. In addition, by adding silica fumed to composites, the tensile and flexural strength of CFRCC is greatly improved.

Feasibility of UHPC shields in spent fuel vertical concrete cask to resist accidental drop impact

  • P.C. Jia;H. Wu;L.L. Ma;Q. Peng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4146-4158
    • /
    • 2022
  • Ultra-high performance concrete (UHPC) has been widely utilized in military and civil protective structures to resist intensive loadings attributed to its excellent properties, e.g., high tensile/compressive strength, high dynamic toughness and impact resistance. At present, aiming to improve the defects of the traditional vertical concrete cask (VCC), i.e., the external storage facility of spent fuel, with normal strength concrete (NSC) shield, e.g., heavy weight and difficult to fabricate/transform, the feasibility of UHPC applied in the shield of VCC is numerically examined considering its high radiation and corrosion resistance. Firstly, the finite element (FE) analyses approach and material model parameters of NSC and UHPC are verified based on the 1/3 scaled VCC tip-over test and drop hammer test on UHPC members, respectively. Then, the refined FE model of prototypical VCC is established and utilized to examine its dynamic behaviors and damage distribution in accidental tip-over and end-drop events, in which the various influential factors, e.g., UHPC shield thickness, concrete ground thickness, and sealing methods of steel container are considered. In conclusion, by quantitatively evaluating the safety of VCC in terms of the shield damage and vibrations, it is found that adopting the 300 mm-thick UHPC shield instead of the conventional 650 mm-thick NSC shield can reduce about 1/3 of the total weight of VCC, i.e., about 50 t, and 37% floor space, as well as guarantee the structural integrity of VCC during the accidental drop simultaneously. Besides, based on the parametric analyses, the thickness of concrete ground in the VCC storage site is recommended as less than 500 mm, and the welded connection is recommended for the sealing method of steel containers.