• Title/Summary/Keyword: M2M Device

Search Result 2,303, Processing Time 0.043 seconds

M2M Gateway based on CoAP in SG Environment (SG 환경에서 CoAP 기반 M2M 게이트웨이)

  • Shin, In-Jae;Park, Jee-Won;Lee, Sang-Hoon;Song, Byung-Kwen
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.47-48
    • /
    • 2015
  • As the power system develops rapidly into a smarter and more flexible state, so must the communication technologies that support it. Machine to machine (M2M) communication in Smart Grid environment has been discussed in European Telecommunications Standards Institute (ETSI). The power system is not easily replaceable, due to system replacement cost. The M2M gateway is required in other to improve interoperability in M2M environment. The Distributed Network Protocol 3.0 (DNP3.0) is the most important standard in the SCADA systems for the power. It has been used for device data collection/control in Substation Systems, Distribution Automation System. If the DNP3.0 data model is combined with a set of contemporary web protocols, it can result in a major shift. We selected Constrained Application Protocol (CoAP) based on RESTful as M2M protocol. It is a specialized web transfer protocol for use with constrained nodes and constrained networks. We have used the OPNET Modeler 17.1 in order to verity the SOAP versus CoAP. In this paper, we propose the CoAP-based M2M Gateway to Distribution Automation system using DNP3.0 in Smart Grid Environment.

  • PDF

Preparation and Electrochemical Performance of 1.5 V and 3.0 V-Class Primary Film Batteries for Radio Frequency Identification (RFID)

  • Lee, Young-Gi;Choi, Min-Gyu;Kang, Kun-Young;Kim, Kwang-Man
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • 1.5 V and 3.0 V-class film-type primary batteries were designed for radio frequency identification (RFID) tag. Efficient fabrication processes such as screen-printings of conducting layer ($25{\mu}m$), active material layer ($40{\mu}m$ for anode and $80{\mu}m$ for cathode), and electrolyte/separator/electrolyte layer ($100{\mu}m$), were adopted to give better performances of the 1.5 V-class film-type Leclanch$\acute{e}$ primary battery for battery-assisted passive (BAP) RFID tag. Lithium (Li) metal is used as an anode material in a 3.0 V-class film-type $MnO_2||$Li primary battery to increase the operating voltage and discharge capacity for application to active sensor tags of a radio frequency identification system. The fabricated 3.0 V-class film-type Li primary battery passes several safety tests and achieves a discharge capacity of more than 9 mAh $cm^{-2}$.

Optical Thin Film and Micro Lens Design for Efficiency Improvement of Organic Light Emitting Diode (유기 발광소자의 효율 향상을 위한 광학박막 및 마이크로렌즈 설계)

  • Ki, Hyun-Chul;Kim, Doo-Gun;Kim, Seon-Hoon;Kim, Sang-Gi;Park, A-Reum;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.817-821
    • /
    • 2011
  • We have proposed an optical thin film and micro lens to improve the luminance of organic light emitting device. The first method, optical thin film was calculated refractive index of dielectric layer material that was modulated refractive index of organic material, ITO (indium tin oxide)and glass. The second method, microlens was applied with lenses on the organic device. Optical thin films were designed with Macleod Simulator and Micro Lenses were calculated by FDTD (finite-difference time-domain) solution. The structure of thin film was designed in organic material/ITO/dielectric layer/glass. The lenses size, height and distance were 5 ${\mu}m$, 1 ${\mu}m$, 1 ${\mu}m$, respectively. The material of micro lenses used silicon dioxide. Result, The highest luminance of OLED which applied with microlens was 11,185 $cd/m^2$, when approval voltage was 14.5 V, applied thin film was 5,857 $cd/m^2$. The device efficiency applying microlens increased 3 times than the device which does not apply microlens.

A Study of The Electrical Characteristics of Small Fabricated LTEIGBTs for The Smart Power ICs (스마트 파워 IC에의 활용을 위한 소형 LTEIGBT의 제작과 전기적인 특성에 관한 연구)

  • 오대석;김대원;김대종;염민수;강이구;성만영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.338-341
    • /
    • 2002
  • A new small size Lateral Trench Electrode Insulated Gate Bipolar Transistor (LTEIGBT) is proposed and fabricated to improve the characteristics of device. The entire electrode of LTEIGBT is placed to trench type electrode. The LTEIGBT is designed so that the width of device is 19$\mu\textrm{m}$. The latch-up current density of the proposed LTEIGBT is improved by 10 and 2 times with those of the conventional LIGET and LTIGBT The forward blocking voltage of the LTEIGBT is 130V. At the same size, those of conventional LIGBT and LTIGBT are 60V and 100V, respectively. Because that the electrodes of the proposed device is formed of trench type, the electric field in the device are crowded to trench oxide. We fabricated He proposed LTEIGBT after the device and process simulation was finished. When the gate voltage is applied 12V, the forward conduction currents of the proposed LTEIGBT and the conventional LIGBT are 80mA and 70mA, respectively, at the same breakdown voltage of 150V,

  • PDF

Novel properties of erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect-transistors

  • Jang, Moon-Gyu;Kim, Yark-Yeon;Shin, Jae-Heon;Lee, Seong-Jae;Park, Kyoung-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • silicided 50-nm-gate-length n-type Schottky barrier metal-oxide-semiconductor field-effect-transistors (SB-MOSFETs) with 5 nm gate oxide thickness are manufactured. The saturation current is $120{\mu}A/{\mu}m$ and on/off-current ratio is higher than $10^5$ with low leakage current less than $10{\mu}A/{\mu}m$. Novel phenomena of this device are discussed. The increase of tunneling current with the increase of drain voltage is explained using drain induced Schottky barrier thickness thinning effect. The abnormal increase of drain current with the decrease of gate voltage is explained by hole carrier injection from drain into channel. The mechanism of threshold voltage increase in SB-MOSFETs is discussed. Based on the extracted model parameters, the performance of 10-nm-gate-length SB-MOSFETs is predicted. The results show that the subthreshold swing value can be lower than 60 mV/decade.

A Small Scaling Lateral Trench IGBT with Improved Electrical Characteristics for Smart Power IC

  • Moon, Seung Hyun;Kang, Ey Goo;Sung, Man Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.15-18
    • /
    • 2001
  • A new small scaling Lateral Trench Insulated Gate Bipolar Transistor (SSLTIGBT) was proposed to improve the characteristics of the device. The entire electrode of the LTIGBT was replaced with a trench-type electrode. The LTIGBT was designed so that the width of device was no more than 10 ${\mu}{\textrm}{m}$. The latch-up current densities were improved by 4.5 and 7.6 times, respectively, compared to those of the same sized conventional LTIGBT arid the conventional LTIGBT which has the width of 17 ${\mu}{\textrm}{m}$. The enhanced latch-up capability of the SSLTIGBT was obtained due to the fact that the hole current in the device reaches the cathode via the p+ cathode layer underneath the n+ cathode layer, directly. The forward blocking voltage of the SSLTIGBT was 125 V. At the same size, those of the conventional LTIGBT and the conventional LTIGBT with the width of 17 ${\mu}{\textrm}{m}$ were 65 V and 105 V, respectively. Because the proposed device was constructed of trench-type electrodes, the electric field In the device were crowded to trench oxide. Thus, the punch through breakdown of LTEIGBT occurred late.

  • PDF

Analysis of Ping Agent based on FIPA-OS and Design of Dialogue Agent Module in M2M Environment (M2M 환경에서 FIPA-OS 를 사용하는 Ping Agent 분석 및 이를 통한 Dialogue Agent 모듈 설계)

  • 김동훈;이승우;임선종;송준엽;고광식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1202-1206
    • /
    • 2004
  • In the future, a machine-tool will be more improved in the form of a knowledge evolution based device. In order to develop the knowledge evolution based machine-tool, this paper proposes the structure of knowledge evolution and the scheme of a dialogue agent among agent-based modules such as a sensory module, a dialogue module, and an expert system. The dialogue agent has a role of interfacing with another machine for cooperation. To design of the dialogue agent module in M2M(Machine To Machine) environment, FIPA-OS and ping agent based on FIPA-OS are analyzed in this study. Through this, it is expected that the dialogue agent module can be more efficiently designed and the knowledge evolution based machine-tool can be hereafter more easily implemented.

  • PDF

RGB White Organic Light Emitting Diode with a Color Control Layer

  • Lee, Jeong-Ik;Chu, Hye-Yong;Yang, Yong-Suk;Lee, Mi-Do;Chung, Sung-Mook;KoPark, Sang-Hee;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1587-1590
    • /
    • 2006
  • Through the engineering of recombination region and energy transfer in organic light emitting device, blue and red light emitting device with good color stability has been successfully obtained. A Color control layer (CCL), which emits green light through the energy transfer from the emission layers, has been introduced into the blue and red light emitting device for RGB white OLED. The RGB white OLED showed the current efficiency of 13 cd/A and the CIE coordinates of (0.33, 0.38) at $1000\;cd/m^2$. The device exhibited very stable spectrum with respect to operating current density and the CIE coordinates varied from (0.34, 0.38) to (0.31, 0.37) for $100-22000\;cd/m^2$.

  • PDF

White Organic Light-Emitting Diodes with Color Stability

  • Seo, Ji-Hoon;Park, Jung-Sun;Koo, Ja-Ryong;Seo, Bo-Min;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.357-361
    • /
    • 2009
  • The authors have demonstrated white oraganic light-emitting diodes (WOLED) using 1,4-bis[2-(4'-diphenylaminobiphenyl-4-yl)vinyl]benzene as fluorescent blue emitter and iridium(III) bis(5-acetyl-2-phenylpyridinato-N,C2') acetylacetonate as phosphorescent red emitter. The optimized WOLED using red host material as bis(2-methyl-8-quinolinato) -4-phenylphenolate exhibited proper color stability in comparison with the control device using 4,4'-N,N'-dicarbazole-biphenyl as red host. The white device showed a maximum luminance of 21100 $cd/m^2$ at 14 V, luminous efficiency of 9.7 cd/A at 20 $mA/cm^2$, and Commission Internationale de I'Eclairage ($CIE_{x,y}$)coordinates of (0.32, 0.34) at 1000 $cd/m^2$. The devices also exhibited the color shift with ${\Delta}CIE_{x,y}$ coordinates of ${\pm}$ (0.01,0.01) from 100 to 20000 $cd/m^2$.

New Donor Materials Based on Thiazole and Triphenylamine for Photovoltaic Devices

  • Ro, Tak-Kyun;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2897-2902
    • /
    • 2012
  • New photovoltaic donor materials, 4,4'-(2,2'-bithiazole-5,5'-diyl)bis(N,N-diphenylbenzenamine) (BDT) and 4-(2,2'-bithiazol-5-yl)-N,N-diphenylbenzenamine (BT), were synthesized. A solution processable triphenylamine-containing bithiazole (BDT and BT) was blended with a [6,6]-phenyl $C_{61}$ butyric acid methyl ester (PCBM) acceptor to study the performance of small-molecule-based bulk heterojunction (BHJ) photovoltaic devices. Optimum device performance was achieved after annealing, for device with a BDT/PCBM ratio of 1:4. The open-circuit voltage, short-circuit current, and power conversion efficiency of the device with the aforementioned BDT/PCBM ratio were 0.51 V, 4.10 $mA\;cm^{-2}$, and 0.68%, respectively, under simulated AM 1.5 solar irradiation (100 $mW\;cm^{-2}$).