• Title/Summary/Keyword: M13 Virus

Search Result 122, Processing Time 0.034 seconds

Electrodeposition of AuPt Alloy Nanostructures on a Biotemplate with Hierarchically Assembled M13 Virus Film Used for Methanol Oxidation Reaction

  • Manivannan, Shanmugam;Seo, Yeji;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.284-293
    • /
    • 2019
  • Herein, we report an electrode surface with a hierarchical assembly of wild-type M13 virus nanofibers (M13) to nucleate the AuPt alloy nanostructures by electrodeposition. M13 was pulled on the electrode surface to produce a virus film, and then a layer of sol-gel matrix (SSG) was wrapped over the surface to protect the film, thereby a bio-template was constructed. Blending of metal binding domains of M13 and amine groups of the SSG of the bio-template were effectively nucleate and directed the growth of nanostructures (NSs) such as Au, Pt and AuPt alloy onto the modified electrode surface by electrodeposition. An electrocatalytic activity of the modified electrode toward methanol oxidation in alkaline medium was investigated and found an enhanced mass activity ($534mA/mg_{Pt}$) relative to its controlled experiments. This bio-templated growth of NSs with precise composition could expedite the intention of new alloy materials with tuneable properties and will have efficacy in green energy, catalytic, and energy storage applications.

Titer Amplification of GALV (Gibbon Ape Leukemia Virus) Pseudotyped Retrovirus Vectors Produced from PG13 Cells (PG13 Cell로부터 생산된 GALV (Gibbon Ape Leukemia Virus)-pseudotyped Retrovirus Vector의 증폭)

  • 김태완;박윤엽;권모선;염행철;김경화;박영식;박세필
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.4
    • /
    • pp.397-403
    • /
    • 1997
  • For the ultimate goal of efficient retrovirus vector-mediated transgenic animal production, we tried to increase virus titer by employing three methods: boosting virus production by treating virus-producing cells with sodium butyrate, concentration of virus stock by either filtration or ultracentrifugation. Compared to the control, applications of sodium butyrate (5 mM) treatment and filtration resulted in only 3 and 3. 6 folds of titer increases on bovine EBTr target cells, respectively. However, concentration of virus-containing medium by ultracentrifugation showed 12.5 folds of titer increase compared to the control (10${\times}$10$^5$ LacZ$^+$ TU Im), indicating the best method which can enhance retrovirus vector-mediated transgenic animal production.

  • PDF

Antiviral effects of Bovine antimicrobial peptide against TGEV in vivo and in vitro

  • Liang, Xiuli;Zhang, Xiaojun;Lian, Kaiqi;Tian, Xiuhua;Zhang, Mingliang;Wang, Shiqiong;Chen, Cheng;Nie, Cunxi;Pan, Yun;Han, Fangfang;Wei, Zhanyong;Zhang, Wenju
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.80.1-80.13
    • /
    • 2020
  • Background: In suckling piglets, transmissible gastroenteritis virus (TGEV) causes lethal diarrhea accompanied by high infection and mortality rates, leading to considerable economic losses. This study explored methods of preventing or inhibiting their production. Bovine antimicrobial peptide-13 (APB-13) has antibacterial, antiviral, and immune functions. Objectives: This study analyzed the efficacy of APB-13 against TGEV through in vivo and in vitro experiments. Methods: The effects of APB-13 toxicity and virus inhibition rate on swine testicular (ST) cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT). The impact of APB-13 on virus replication was examined through the 50% tissue culture infective dose (TCID50). The mRNA and protein levels were investigated by real-time quantitative polymerase chain reaction and western blot (WB). Tissue sections were used to detect intestinal morphological development. Results: The safe and effective concentration range of APB-13 on ST cells ranged from 0 to 62.5 ㎍/mL, and the highest viral inhibitory rate of APB-13 was 74.1%. The log10TCID50 of 62.5 ㎍/mL APB-13 was 3.63 lower than that of the virus control. The mRNA and protein expression at 62.5 ㎍/mL APB-13 was significantly lower than that of the virus control at 24 hpi. Piglets in the APB-13 group showed significantly lower viral shedding than that in the virus control group, and the pathological tissue sections of the jejunum morphology revealed significant differences between the groups. Conclusions: APB-13 exhibited good antiviral effects on TGEV in vivo and in vitro.

Phage Litmus: Biomimetic Virus-Based Colorimetric Sensors for Explosive Detection

  • O, Jin-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.90.1-90.1
    • /
    • 2013
  • Nature utilizes various of the colorization process. Some species of birds can express their mood of tempers by changing their collagen structures on skin. For example, turkey can change their skin color by expansion of the collagen structures, which are associated with the distinct color changes. Here, we developed bioinspired virus-based colorimetric sensors which can be genetically tuned for target molecule. Using M 13 bacteriophage, we fabricated responsive self-assembled color matrices composed of quasi-ordered fiber bundle structures. These virus matrices can exhibit color change by stimuli through fiber bundle structure modulation. Upon exposure of volatile organic compounds, the resulting multi-colored matrices exhibited distinct color changes with different ratios that can be recognized by the naked eyes. Using the directed evolutionary approaches, we genetically engineered the virus matrix to incorporate binding motif for explosive detection (i.e., trinitrotoluene (TNT)). Through utilizing a common handheld device (i.e., iPhone), we could distinguish TNT molecules down to 20 ppb in a selective manner. Our novel biomimetic virus colorimetric sensor can overcome current limitation for low response selectivity.

  • PDF

Function and Oligomerization Study of the Leucine Zipper-like Domain in P13 from Leucania separata Multiple Nuclear Polyhedrosis Virus

  • Du, Enqi;Yao, Lunguang;Xu, Hua;Lu, Songya;Qi, Yipeng
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.232-238
    • /
    • 2007
  • The p13 gene is uniquely present in Group II nucleopolyhedroviruses (NPVs) and some granuloviruses, but not in Group I NPVs. p13 gene was first described by our laboratory in Leucania separatamultiple nuclear polyhedrosis virus (Ls-p13) in 1995. However, the functions of Ls-P13 and of its homologues are unknown. When Ls-p13 was inserted into Autographa californica nucleopolyhedrovirus, a Group I NPV, polyhedra yield was inhibited. However, this inhibition was prevented when the leucine zipper-like domain of Ls-p13 was mutated. To determine the cause of this marked difference between Ls-P13 and leucine zipper mutated Ls-P13 (Ls-P13mL), oligomerization and secondary structure analyses were performed. High performance liquid chromatography and yeast two-hybrid assays indicated that neither Ls-P13 nor Ls-P13mL could form oligomers. Informatics and circular dichroism spectropolarimetry results further indicated marked secondary structural differences between Ls-P13 and Ls-P13mL. The LZLD of Ls-P13 has two extended heptad repeat units which form a hydrophobic surface, but it is short of a third hydrophobic heptad repeat unit for oligomerization. However, the mutated LZLD of Ls-P13mL lacks the above hydrophobic surface, and its secondary structure is markedly different. This difference in its secondary structure may explain why Ls-P13mL is unable to inhibit polyhedra yield.

Purification of Odontoglossum Ringspot Virus by DEAE-Cellulose Chromatography (DEAE 셀루로오즈 컬럼 크로마토그래피 기법에 의한 Odontoglossum 윤문 바이러스의 정제)

  • 이철호;박종오;정효원;나용준
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.559-562
    • /
    • 1998
  • Odontoglossum ringspot virus (ORSV) was finally purified from ORSV-infected orchid plants by diethylaminoethyl (DEAE) cellulose anion exchange column chromatography. The virus was reliably eluted by potassium chloride at the concentration from 0.1 M to 0.13 M. Partial purification was done by solubilization with Triton X-100 (allkylphenoxypolyethoxy ethanol) and precipitation with polyethylene glycol (PEG; MW 8,000). The finally purified ORSV represented one distinct homogeneous band and the molecular weight of its capsid protein was about 17,500 Dalton in electrophoretic analysis. Electron microscopy showed not only intact particles ranged from 280 nm to 340 nm in length, but also segmented particles that final 140 nm to 220 nm and even disks. Enzyme-linked immunosorbent assay (ELISA) showed that final yield was 12 mg/100 g of the infected leaves. Bioassay demonstrated that the purified ORSV had the normal infectivity to orchid plants and Nicotiana glutionsa. Based on these data, anion exchange column chromatography could be efficiently applied to the purification of ORSV and other viruses similar to ORSV.

  • PDF

Effects of Gal-13 on the Content of Immunoglobulin, Proliferation of Lymphocyte and Antibody Titers after Vaccination with Infectious Bursal Disease Virus Vaccine in Chickens

  • Yang, Yurong;Jiang, Yibao;She, Ruiping;Peng, Kaisong;Zhou, Xuemei;Yin, Qingqiang;Wang, Decheng;Liu, Tianlong;Bao, Huihui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.405-411
    • /
    • 2007
  • Gal-13 is an antimicrobial peptide isolated from chicken intestine. Ninety chickens were randomly divided into two groups (45 chickens for each group) to determine the effect of oral administration of Gal-13 on the acquired immune response. The chickens in the first group were fed a diet without Gal-13 as the control, and the chickens in the second group were fed the same diet, except that Gal-13 ($1{\mu}g/ml$) was suspended in drinking water just after hatching. Samples of blood, thymus, bursa of fabricius and spleen were taken at day 1, 4, 7, 10 and 17. The chickens in both groups received infectious bursal disease virus vaccine at day 20, and then sera samples were collected for analysis at 14, 21, 28 and 35 days after vaccination. The results showed: (1) Gal-13 could enhance the content of immunoglobulin (Ig)G at the age of 4 to10 days (p<0.05) and IgM at the age of 4 and 10 days (p<0.05) in the serum; (2) In vitro experiments showed that Gal-13 (0.625-1.250${\mu}g/ml$) enhanced the proliferation of peripheral blood lymphocytes of the chickens stimulated by lipopolysaccharide (LPS) and concanavlin A (ConA). Compared to the control, Gal-13 (1 ${\mu}g/ml$) enhanced the proliferation of bursa lymphocytes at 17 days of age (p<0.01) and thymus lymphocytes at 7 days of age (p<0.01), but restrained lymphocyte proliferation in chicken spleen and differed significantly at day 10 (p<0.01); (3) Gal-13 enhanced infectious bursal disease virus antibody in sera of chickens 21 days after infectious bursal disease virus vaccine administration (p<0.05). These results suggested that Gal-13 could modulate adaptive immune responses of chickens.

Study on the Infectious Flacherie Virus of Silkworm, Bombyx Mori L. (가잠의 Virus성 연화병에 관한 연구)

  • 한계용
    • Journal of Sericultural and Entomological Science
    • /
    • v.13 no.1
    • /
    • pp.35-47
    • /
    • 1971
  • Current overseas research reveals that among the pathogens causing flacherie of silkworm, damage by infectious flacherie virus is the most serious, but little research in this fold has been reported in Korea. This experiment was undertaken to observe the occurrence of infectious flacherie virus by means of biological environmental conditions associated with occurrence of virus discase and interaction of the virus of flacherie and Bacillus spp. isolated from flacherie silkworm, and to determine ways to check infection by the virus during the rearing of silkworms. The results obtained are as follows: 1. The pathogen, infectious flacherie virus observed in Korea, is proved to be round in shape and 26-30m$\mu$ in diameter under observation with electron microscope, 2. The infectious flacherie virus-disease occurred apparently in conditions of nutritional disturbance such as shortage of diet or rearing in high temperature and humidity during the 3-4th instar. 3. The percentage of disease-occurrence was increased remarkably, and the latent period was shortened in the case of simple inoculation of virus suspension as compared with the suspension added with bacteria. 4. The application of calcium hydroxide in the silkworm-rearing bed is able to check infection of virus disease.

  • PDF

Isolation and Characterization of White Spot Syndrome Baculovirus in Cultured Penaeid Shrimp (Penaeus chinensis) (양식새우(Penaeus chinensis)에서의 White Spot Baculovirus의 분리 및 특성)

  • Heo, M.S.;Sohn, S.G.;Sim, D.S.;Kim, J.W.;Park, M.A.;Lee, J.S.;Choi, D.L.;Jung, S.H.;Kim, Y.J.;Oh, M.J.
    • Journal of fish pathology
    • /
    • v.13 no.1
    • /
    • pp.7-13
    • /
    • 2000
  • Beginning in the summer of 1993, a serious mortality among cultured penaeid shrimp occurred in the western sea of Korea. The typical sign of this disease was white spots inside the surface of the carapace. Cytopathic effect (CPE) were not observed by virus in CHSE-214, RTG-2, but not by pH 11. A nonoccluded rod-shaped form virus was observed by electron microscopy in the lymphoid organ. The virion was bacilliform virus and sourrounded by a virion envelope. Its virion protein was found to be similar to hypodermal and hematopoietic necrosis virus (HHNBV) by analysis of virion proteins in SDS-PAGE. The genome of virus is double stranded DNA molecule whose full length was about 114kb. It was similar to penaeus acute viremia (PAV) of Japan.

  • PDF

Identification of a New Potyvirus Associated with Chlorotic Vein Banding Disease of Spathiphyllum spp., in Andhra Pradesh, India

  • Padmavathi, M.;Srinivas, K.P.;Reddy, Ch. V. Subba;Ramesh, B.;Navodayam, K.;Krishnaprasadji, J.;Babu, P. Ratan;Sreenivasulu, P.
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.33-36
    • /
    • 2011
  • The genome of a potyvirus isolate associated with chlorotic spots and vein banding symptoms on Spathiphyllum spp., in Andhra Pradesh state, India was amplified by RT-PCR using degenerate potyvirus primers, amplicons cloned, and sequence (1.6 kb) analyzed. This virus isolate shared maximum identity of 74.8% and 80.2% at coat protein (CP) gene nucleotide (906 nucleotides) and amino acid (302 amino acids) levels, respectively with Dasheen mosaic virus (DsMV)-M13 isolate reported from China. But its 3'-UTR (258 nucleotides) had maximum identity of 62.5% with DsMV-Vietnam isolate. The deduced molecular weight of CP is 33.57 kDa and it contained DAG triplet in its N-terminal region. In CP amino acid based phylogenetic analysis, this virus isolate represented a separate branch but closer to DsMV isolates cluster. Based on the molecular criteria set for the discrimination of species and genus in the Potyviridae family, the present virus isolate was identified as a distinct virus species in the genus Potyvirus and proposed the name Spathiphyllum chlorotic vein banding virus (SCVbV).