Browse > Article
http://dx.doi.org/10.33961/jecst.2019.03384

Electrodeposition of AuPt Alloy Nanostructures on a Biotemplate with Hierarchically Assembled M13 Virus Film Used for Methanol Oxidation Reaction  

Manivannan, Shanmugam (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Seo, Yeji (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Kim, Kyuwon (Electrochemistry Laboratory for Sensors & Energy (ELSE), Department of Chemistry, Incheon National University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.3, 2019 , pp. 284-293 More about this Journal
Abstract
Herein, we report an electrode surface with a hierarchical assembly of wild-type M13 virus nanofibers (M13) to nucleate the AuPt alloy nanostructures by electrodeposition. M13 was pulled on the electrode surface to produce a virus film, and then a layer of sol-gel matrix (SSG) was wrapped over the surface to protect the film, thereby a bio-template was constructed. Blending of metal binding domains of M13 and amine groups of the SSG of the bio-template were effectively nucleate and directed the growth of nanostructures (NSs) such as Au, Pt and AuPt alloy onto the modified electrode surface by electrodeposition. An electrocatalytic activity of the modified electrode toward methanol oxidation in alkaline medium was investigated and found an enhanced mass activity ($534mA/mg_{Pt}$) relative to its controlled experiments. This bio-templated growth of NSs with precise composition could expedite the intention of new alloy materials with tuneable properties and will have efficacy in green energy, catalytic, and energy storage applications.
Keywords
Bio-template; Metal Electrodeposition; M13 Virus; Methanol Oxidation; Surface Functionalization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, S. Y.; Lim, J. S.; Harris, M. T., Biotechnol. Bioeng., 2012, 109(1), 16-30.   DOI
2 Flynn, C. E.; Lee, S. W.; Peelle, B. R.; Belcher, A. M., Acta Mater., 2003, 51(19), 5867-5880.   DOI
3 McMillan, R. A.; Paavola, C. D.; Howard, J.; Chan, S. L.; Zaluzec, N. J.; Trent, J. D., Nat. Mater.,2002, 1(4), 247-252.   DOI
4 Manivannan, S.; Seo, Y.; Kang, D. K.; Kim, K., New J. Chem., 2018, 42(24), 20007-20014.   DOI
5 Naik, R. R.; Stringer, S. J.; Agarwal, G.; Jones, S. E.; Stone, M. O., Nat. Mater., 2002, 1(3), 169-172.   DOI
6 Flynn, C. E.; Mao, C.; Hayhurst, A.; Williams, J. L.; Georgiou, G.; Iverson, B.; Belcher, A. M., J. Mater. Chem., 2003, 13(10), 2414-2421.   DOI
7 Flynn, C. E.; Lee, S.-W.; Peelle, B. R.; Belcher, A. M., Acta Mater.,2003, 51(19), 5867-5880.   DOI
8 Bricarello, D. A.; Smilowitz, J. T.; Zivkovic, A. M.; German, J. B.; Parikh, A. N., ACS Nano, 2010, 5 (1), 42-57.   DOI
9 Sleytr, U. B.; Messner, P.; Pum, D.; Sara, M., Angew. Chem. Int. Ed., 1999, 38(8), 1034-1054.   DOI
10 Manivannan, S.; Kang, I.; Seo, Y.; Jin, H. E.; Lee, S. W.; Kim, K., ACS Appl. Mater. Interfaces, 2017, 9(38), 32965-32976.   DOI
11 Seo, Y.; Manivannan, S.; Kang, I.; Lee, S. W.; Kim, K., Biosens. Bioelectron., 2017, 94, 87-93.   DOI
12 Chung, W. J. ; Oh, J. W. ; Kwak, K. W. ; Lee, B. Y. ; Meyer, J; Wang, E; Hexemer, A; Lee, S. W. Nature. 2011, 478, 364-368.   DOI
13 Kang, I.; Shin, W. S.; Manivannan, S.; Seo, Y.; Kim, K., J. Electrochem. Sci. Technol., 2016, 7(4), 277-285.   DOI
14 Seo, Y.; Manivannan, S.; Kang, I.; Shin, W. S.; Kim, K., J. Electrochem. Sci. Technol., 2017, 8(1), 25-34.   DOI
15 Manivannan, S.; Kim, K., Electroanalysis, 2016, 28(7), 1608-1616.   DOI
16 Lee, Y.; Kim, J.; Yun, D. S.; Nam, Y. S.; Shao-Horn, Y.; Belcher, A. M., Energy Environ. Sci., 2012, 5(8), 8328- 8334.   DOI
17 Manivannan, S.; Ramaraj, R., J. Nanopart. Res., 2013, 15(10), 1978(1-13).   DOI
18 Yoo, S. Y.; Oh, J. W.; Lee, S. W., Langmuir 2012, 28(4), 2166-2172.   DOI
19 Mao, C.; Flynn, C. E.; Hayhurst, A.; Sweeney, R.; Qi, J.; Georgiou, G.; Iverson, B.; Belcher, A. M., Proc. Natl. Acad. Sci. U.S.A., 2003, 100(12), 6946-6951.   DOI
20 Manocchi, A. K.; Horelik, N. E.; Lee, B.; Yi, H., Langmuir, 2010, 26(5), 3670-3677.   DOI
21 Yang, C.; Manocchi, A. K.; Lee, B.; Yi, H., Appl. Catal., B, 2010, 93(3-4), 282-291.   DOI
22 DePorter, S. M.; McNaughton, B. R., Bioconjugate Chem., 2014, 25(9), 1620-1625.   DOI
23 Chung, W. J.; Merzlyak, A.; Yoo, S. Y.; Lee, S. W., Langmuir 2010, 26(12), 9885-9890.   DOI
24 Merzlyak, A.; Indrakanti, S.; Lee, S. W., Nano Letters 2009, 9(2), 846-852.   DOI
25 Chung, W. J.; Merzlyak, A.; Lee, S. W., Soft Matter 2010, 6(18), 4454-4459.   DOI
26 Yang, S. H.; Chung, W. J.; McFarland, S.; Lee, S. W., Chemical Record 2013, 13(1), 43-59.   DOI
27 Drummy, L. F.; Jones, S. E.; Pandey, R. B.; Farmer, B. L.; Vaia, R. A.; Naik, R. R., ACS Appl. Mater. Interfaces, 2010, 2(5), 1492-1498.   DOI
28 Manivannan, S.; Kim, K., J. Electroanal. Chem., 2016, 776, 82-92.   DOI
29 Choi, K-H.; Lee, K-S.; Jeon, T-Y.; Park, H-Y.; Jung, N.; Chung, Y-H.; Sung, Y-E., J. Electrochem. Sci. Technol.,2010, 1(1), 19-24.   DOI
30 Shin, D.; Kim, Y-R.; Choi, M.; Rhee, C. K., J. Electrochem. Sci. Technol., 2014, 5(3), 82-86.   DOI
31 Ponmani, K.; Kiruthika, S.; Muthukumaran, B., J. Electrochem. Sci. Technol.,2015, 6(3), 95-105.   DOI