• Title/Summary/Keyword: M-splitting

Search Result 287, Processing Time 0.027 seconds

Design of pixelated phase gratings for optical image generation (광영상 발생을 위한 화소형 위상격자의 설계 및 제작)

  • Lee, Deug-Ju;Kim, Nam;Lee, Kwon-Yeon;Eun, Jae-Jeong
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.5
    • /
    • pp.132-141
    • /
    • 1996
  • The pixelated phase grating has been studied as a kind of diffraction gratings splitting and input beam into multiple spots. It consists of regular size cells which produce phase delays, and each cell provokes the phase delay up to sixteen levels. We have compared and analyzed the characteristics of multi-level phase gratings, laying streess on efficiency and resulted pattern. Experimental resutls obtained form fabricated grating have been presented, and the real-time method using a liquid-crystal spatial light modulator has been demonstrated through experiments. Gratings making meams with specific intensities have been designed and optical images have been generated by them. In order to specific intensities have been designed and optical images have been genrated by them. In order to decide the phase delay of each cell, optimization conditon consists of diffraction efficiency and target values. One period of phase gratings fabricated with surface relief was less than 256${\mu}m{\times}256{\mu}m$ and size of each cell was 1${\mu}m{\times}1{\mu}m$ surface relief grating has been made by coating photoresist on the glass plate, writing information pattern by Ar laser and developing it. in the experiment for real-tiem processing liquid-crystal display of epson video projector has been used.

  • PDF

Hydrogen production with high temperature solar heat thermochemical cycle using NiFe2O4/m-ZrO2 device (NiFe2O4/m-ZrO2 device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Shin, Il-Yoong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.1
    • /
    • pp.107-114
    • /
    • 2011
  • Two-step thermochemical cycle using ferrite-oxide($Fe_3O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The $m-ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30mL.

Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction (중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용)

  • Yoonmo Koo;Youngbin Lee;Kyungmin Im;Jinsoo Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.180-185
    • /
    • 2023
  • To improve the efficiency of water electrolysis, it is essential to develop an oxygen evolution reaction (OER) electrocatalyst with high performance and long-term stability, accelerating the reaction rate of OER. In this study, a hollow metal-organic framework (MOF)-derived ruthenium-cobalt oxide catalyst was developed to synthesize an efficient OER electrocatalyst. As the synthesized catalyst increases the surface exposure of ruthenium, a low overpotential (386 mV) was observed at a current density of 10 mA/cm2 with a low Tafel slope. It is expected to be able to replace noble metal catalysts by showing higher mass activity and stability than commercial RuO2 catalysts.

Design of an eFuse OTP Memory of 8bits Based on a Generic Process ($0.18{\mu}m$ Generic 공정 기반의 8비트 eFuse OTP Memory 설계)

  • Jang, Ji-Hye;Kim, Kwang-Il;Jeon, Hwang-Gon;Ha, Pan-Bong;Kim, Young-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.687-691
    • /
    • 2011
  • In this paper, we design an 8-bit eSuse OTP (one-time programmable) memory in consideration of EM (electro-migration) and eFuse resistance variation based on a $0.18{\mu}m$ generic process, which is used for an analog trimming application. First, we use an external program voltage to increase the program power applied an eFuse. Secondly, we apply a scheme of precharging BL to VSS prior to RWL (read word line) activation and optimize read NMOS transistors to reduce the read current flowing through a non-programmed cell. Thirdly, we design a sensing margin test circuit with a variable pull-up load out of consideration for the eFuse resistance variation of a programmed eFuse. Finally, we increase program yield of eFuse OTP memory by splitting the length of an eFuse link.

  • PDF

Magnetic Properties of Multiferroic h-HoMnO3 (Multiferroic h-HoMnO3의 자기적 성질 연구)

  • Kim, Sung-Baek;Kum, Bok-Yeon;Kim, Chul-Sung;An, Sung-Yong;Park, N.Hur, S.;Cheong, S.W.;Jang, Kwang-Hyun;Park, J.G.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.113-117
    • /
    • 2005
  • Multiferroic $HoMnO_3$ single crystal was prepared using 4-point focused floating zone furnace, and polycrystalline $HoMn_{1-x}\;^57Fe_xO_3$ (x=0.00, 0.01, 0.02, 0.05) powders have been prepared by solid state reaction. Their magnetic and crystallographic properties are studied using MPMS, PPMS, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structure found to be a hexagonal and a magnetic easy-axis is (110) direction. As the external applied magnetic field increases, temperature of the dielectric constant anomaly is decreased. $HoMn_{0.95}\;^{57}Fe_{0.05}O_3$ shows huge quadrupole splitting value from the $M\ddot{o}ssbauer$ spectra.

Two-step thermochemical cycles for hydrogen production using NiFe2O4/m-ZrO2 and CeO2 devices (NiFe2O4/m-ZrO2와 CeO2를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Kim, Chul-Sook;Cho, Ji-Hyun;Kim, Dong-Yeon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Two-step thermochemical cycle using ferrite-oxide($Fe_2O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The m-$ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30ml. And cerium oxide($CeO_2$) device was used for increasing $H_2$ production rate. $CeO_2$ device had low thermal resistance, however, more $H_2$ production rate than $Fe_2O_4$ device.

Photoelectrochemical Water Oxidation Using ZnO Nanorods Coupled with Cobalt-Based Catalysts

  • Jeon, Tae-Hwa;Choi, Sung-Kyu;Jeong, Hye-Won;Kim, Seung-Do;Park, Hyun-Woong
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.4
    • /
    • pp.187-192
    • /
    • 2011
  • Photoelectrochemical performances of ZnO electrodes are enhanced by coupling with cobalt-based catalyst (CoPi) in phosphate electrolyte (pH 7). For this study, hexagonal pillar-shaped ZnO nanorods are grown on ZnO electrodes through a chemical bath deposition, onto which CoPi is deposited with different photodeposition times (10-30 min). A scanning electron microscopic study indicates that CoPi deposition does not induce any change of ZnO morphology and an energy-dispersive X-ray spectroscopic analysis shows that inorganic phosphate ions (Pi) exist on ZnO surface. Bare ZnO electrodes generate the current of ca. $0.36mA/cm^2$ at a bias potential of 0.5 V vs. SCE, whereas ZnO/CoPi (deposited for 10 min) has ca. 50%-enhanced current ($0.54mW/cm^2$) under irradiation of AM 1.5G-light ($400mW/cm^2$). The excess loading of CoPi on ZnO results in decrease of photocurrents as compared to bare ZnO likely due to limited electrolyte access to ZnO and/or CoPi-mediated recombination of photogenerated charge carriers. The primary role of CoPi is speculated to trap the photogenerated holes and thereby oxidize water into molecular oxygen via an intervalency cycle among Co(II), Co(III), and Co(IV).

Coconut shell waste as an alternative lightweight aggregate in concrete- A review

  • Muhammad Fahad, Ejaz;Muhammad ,Aslam;Waqas, Aziz;M. Jahanzaib, Khalil;M. Jahanzaib, Ali;Muhammad, Raheel;Aayzaz, Ahmed
    • Advances in materials Research
    • /
    • v.11 no.4
    • /
    • pp.299-330
    • /
    • 2022
  • This review article highlights the physical, mechanical, and chemical properties of coconut shells, and the fresh and hardened properties of the coconut shell concrete are summarized and were compared with other types of aggregates. Furthermore, the structural behavior in terms of flexural, shear, and torsion was also highlighted, with other properties including shrinkage, elastic modulus, and permeability of the coconut shell concrete. Based on the reviewed literature, concrete containing coconut shell as coarse aggregate with normal sand as fine showed the 28-day compressive strength between 2 and 36 MPa with the dried density range of 1865 to 2300 kg/m3. Coconut shell concretes showed a 28-day modulus of rupture and splitting tensile strength values in the ranges of 2.59 to 8.45 MPa and 0.8 to 3.70 MPa, respectively, and these values were in the range of 5-20% of the compressive strength. The flexural behavior of CSC was found similar to other types of lightweight concrete. There were no horizontal cracks on beams which indicate no bond failure. Whereas, the diagonal shear failure was prominent in beams with no shear reinforcements while flexural failure mode was seen in beams having shear reinforcement. Under torsion, CSC beams behave like conventional concrete. Finally, future recommendations are also suggested in this study to investigate the innovative lightweight aggregate concrete based on the environmental and financial design factors.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.

Growth and characterization ofZnIn$_2S_4$ single crystal thin film using hot wall epitaxy method (Hot Wall Epitaxy(HWE)에 의한 ZnIn$_2S_4$ 단결정 박막 성장과 특성)

  • 최승평;홍광준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.138-147
    • /
    • 2001
  • The stochiometric mixtures mixture of evaporating materials for the $ZnIn_{2}S_{4}$ single crystal thin film was prepared from horizontal furnace. To obtain the $ZnIn_{2}S_{4}$ single crystal thin film, $ZnIn_{2}S_{4}$ mixed crystal was deposited on throughly etched semi-insulting GaAs(100) in the Hot Wall Epitaxy(HWE) system. The sourceand substrate temperature were $610^{\circ}C$ and $450^{\circ}C$, respectively and the growth rate of the $ZnIn_{2}S_{4}$ single crystal thin film was about 0.5$\mu\textrm{m}$/hr. The crystalline structure of $ZnIn_{2}S_{4}$ single crystal thin film was investigated by photoluminescence and double crystal X-ray diffraction (DCXD) measurement. The carrier density and mobility of $ZnIn_{2}S_{4}$ single crystal thin film measured from Hal effect by van der Pauw method are $8.51{\times}10^{17}{\textrm}{cm}^{-3}$, 291$\textrm{cm}^2$/V.s at $293^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $ZnIn_{2}S_{4}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal filed splitting DCr were 0.0148eV and 0.1678 eV at $10^{\circ}$K, respectively. From the photoluminescence measurement of $ZnIn_{2}S_{4}$ single crystal thin film, we observed free excition($E_{X}$) typically observed only in high quality crystal and neutral donor bound exicton ($D^{\circ}$, X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9meV and 26meV, respectively. The activation energy of impurity measured by Haynes rule was 130meV.

  • PDF