• Title/Summary/Keyword: M-V plane

Search Result 181, Processing Time 0.027 seconds

Flow Resistance and Modeling Rule of Fishing Nets 4. Flow Resistance of Trawl Nets (그물어구의 유수저항과 모형수칙 4. 트롤그물의 유수저항)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.691-699
    • /
    • 1997
  • In order to find out the properties in flow resistance of trawlR=1.5R=1.5\;S\;v^{1.8}\;S\;v^{1.8} nets and the exact expression for the resistance R (kg) under the water flow of velocity v(m/sec), the experimental data on R obtained by other, investigators were pigeonholed into the form of $R=kSv^2$, where $k(kg{\cdot}sec^2/m^4)$ was the resistance coefficient and $S(m^2)$ the wall area of nets, and then k was analyzed by the resistance formular obtained in the previous paper. The analyzation produced the coefficient k expressed as $$k=4.5(\frac{S_n}{S_m})^{1.2}v^{-0.2}$$ in case of bottom trawl nets and as $$k=5.1\lambda^{-0.1}(\frac{S_n}{S_m})^{1.2}v^{-0.2}$$ in midwater trawl nets, where $S_m(m^2)$ was the cross-sectional area of net mouths, $S_n(m^2)$ the area of nets projected to the plane perpendicular to the water flow and $\lambda$ the representitive size of nettings given by ${\pi}d^2/2/sin2\varphi$ (d : twine diameter, 2l: mesh size, $2\varphi$ : angle between two adjacent bars). The value of $S_n/S_m$ could be calculated from the cone-shaped bag nets equal in S with the trawl nets. In the ordinary trawl nets generalized in the method of design, however, the flow resistance R (kg) could be expressed as $$R=1.5\;S\;v^{1.8}$$ in bottom trawl nets and $$R=0.7\;S\;v^{1.8}$$ in midwater trawl nets.

  • PDF

Mechanical Anisotropy of Pocheon Granite under Uniaxial Compression (일축압축하에서 포천화강암의 역학적 이방성)

  • Park Deok-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.337-348
    • /
    • 2005
  • Jurassic granite from Pocheon area were tested to investigate the effect of microcracks on mechanical properties of the granite. Three oriented core specimens were used for uniaxial compressive tests and each core specimen are perpendicular to the axes'R'(rift plane),'c'(grain plane) and'H'(hardway plane), respectively Among vacious elastic constants, the variation of Poisson's ratio as function of the directions was examined. From the related chart between ratio of failure strength and Poisson's ratio, H-specimen shows the highest range in Poisson's ratio and Poisson's ratio decreases in the order of C-specimen and R-specimen. The curve pattern is nearly linear in stage $I\simIII$ but the slope increases abruptly in stage H-3. As shown in the related chart, diverging point of a curve is formed when ratio of failure strength is $0.92\sim0.96$ Stage IV -3 is out of elastic region. The behaviour of rock in the four fracturing stages was analyzed in term of the stress-volumetric strain me. From the stress increment-volumetric strain equations governing the behaviour of rock, characteristic material constants, a, n, Q, m and $\varepsilon_v^{mcf}$, were determined. Among these, inherent microcrack porosity$(a, 10^{-3})$ and compaction exponent(n) in the microcrack closure region(stage I ) show an order of $a^R(3.82)>a^G(3.38)>a^H(2.32)\;and\;n^R(3.69)>n^G(2.79)>n^H(1.99)4, respectively. Especially, critical volumetric microcrack strain($\varepsilon_v^{mcf}$) in the stage W is highest in the H-specimen, normal to the hardway plane. These results indicate a strong correlation between two major sets of microcracks and mechanical properties such as Poisson's ratio and material constants. Correlation of strength anisotropy with microcrack orientation can have important application in rock fracture studies.

A Study on 1-Butene Oxidation over Vanadium Oxide Electrode (바나듐산화물 전극상에서 1-부텐의 산화반응 연구)

  • Park, Seungdoo;Lee, Hag-Young;Hong, Suk-In
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.523-528
    • /
    • 1998
  • The electrochemical characteristics of $V_2O_5$ as working electrode were studied in the cell (1-butene+$O_2$, $V_2O_5{\mid}YSZ{\mid}Ag$, $O_2$) with a YSZ solid electrolyte. The sintering of Ag as a counter electrode was occurred after calcination, and the structure which has the pores of over $3{\mu}m$ was achieved. In particular, the peak of (010) plane of the working electrode on the XRD spectrum which is responsible for selective oxidation appeared after calcination. The major product of 1-butene oxidation over $V_2O_5$ was butadiene. The technique of SEP (solid electrolyte potentiometry) was used to monitor the chemical potential of chemical species adsorbed on the working electrode. Over a wide range of gas compositions of 1-butene and oxygen, open circuit voltage (OCV) exhibited the mixed potential of surface oxygen activity.

  • PDF

End to End Model and Delay Performance for V2X in 5G (5G에서 V2X를 위한 End to End 모델 및 지연 성능 평가)

  • Bae, Kyoung Yul;Lee, Hong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.107-118
    • /
    • 2016
  • The advent of 5G mobile communications, which is expected in 2020, will provide many services such as Internet of Things (IoT) and vehicle-to-infra/vehicle/nomadic (V2X) communication. There are many requirements to realizing these services: reduced latency, high data rate and reliability, and real-time service. In particular, a high level of reliability and delay sensitivity with an increased data rate are very important for M2M, IoT, and Factory 4.0. Around the world, 5G standardization organizations have considered these services and grouped them to finally derive the technical requirements and service scenarios. The first scenario is broadcast services that use a high data rate for multiple cases of sporting events or emergencies. The second scenario is as support for e-Health, car reliability, etc.; the third scenario is related to VR games with delay sensitivity and real-time techniques. Recently, these groups have been forming agreements on the requirements for such scenarios and the target level. Various techniques are being studied to satisfy such requirements and are being discussed in the context of software-defined networking (SDN) as the next-generation network architecture. SDN is being used to standardize ONF and basically refers to a structure that separates signals for the control plane from the packets for the data plane. One of the best examples for low latency and high reliability is an intelligent traffic system (ITS) using V2X. Because a car passes a small cell of the 5G network very rapidly, the messages to be delivered in the event of an emergency have to be transported in a very short time. This is a typical example requiring high delay sensitivity. 5G has to support a high reliability and delay sensitivity requirements for V2X in the field of traffic control. For these reasons, V2X is a major application of critical delay. V2X (vehicle-to-infra/vehicle/nomadic) represents all types of communication methods applicable to road and vehicles. It refers to a connected or networked vehicle. V2X can be divided into three kinds of communications. First is the communication between a vehicle and infrastructure (vehicle-to-infrastructure; V2I). Second is the communication between a vehicle and another vehicle (vehicle-to-vehicle; V2V). Third is the communication between a vehicle and mobile equipment (vehicle-to-nomadic devices; V2N). This will be added in the future in various fields. Because the SDN structure is under consideration as the next-generation network architecture, the SDN architecture is significant. However, the centralized architecture of SDN can be considered as an unfavorable structure for delay-sensitive services because a centralized architecture is needed to communicate with many nodes and provide processing power. Therefore, in the case of emergency V2X communications, delay-related control functions require a tree supporting structure. For such a scenario, the architecture of the network processing the vehicle information is a major variable affecting delay. Because it is difficult to meet the desired level of delay sensitivity with a typical fully centralized SDN structure, research on the optimal size of an SDN for processing information is needed. This study examined the SDN architecture considering the V2X emergency delay requirements of a 5G network in the worst-case scenario and performed a system-level simulation on the speed of the car, radius, and cell tier to derive a range of cells for information transfer in SDN network. In the simulation, because 5G provides a sufficiently high data rate, the information for neighboring vehicle support to the car was assumed to be without errors. Furthermore, the 5G small cell was assumed to have a cell radius of 50-100 m, and the maximum speed of the vehicle was considered to be 30-200 km/h in order to examine the network architecture to minimize the delay.

A Study of the Internal and External Morphology in the Mandibular first Premolar of the Middle-Aged Korean Using a Microcomputed Tomography (미세단층촬영기를 이용한 중년 한국인 하악 제1소구치의 내 외부 형태학 연구)

  • Chun, K.J.;Lee, H.J.;Lee, Jong-Yeop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.254-261
    • /
    • 2005
  • Dental statistics for Koreans are far from complete and the majority of previous researches have adopted techniques such as radiological analysis and sectioning of teeth for morphological information, which are time-consuming, less accurate and destructive. Thus, a new nondestructive method is necessary to get precise dental standardization data for Koreans. For the above purpose, each of the first premolars was scanned by a micro-CT (SkyScan, Belgium) with a resolution of $21.31{\mu}m$ at an interval of 0.022mm along the plane horizontally parallel to an occlusion plane. Internal and external morphological sections were measured and compared to the values in the average tooth size table for permanent teeth presented by G. V Black.

Investigation on the $8{\times}8$ ReadOut IC for Ultra Violet Detector (UV 검출기 제작을 위한 $8{\times}8$ ReadOut IC에 관한 연구)

  • Kim, Joo-Yeon;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.3
    • /
    • pp.45-50
    • /
    • 2005
  • A UV camera is being used in various application regions such as industry, medical science, military, and environment monitoring. A ROIC(ReadOut IC) is developed and can read the responses from UV photodiode sensors which are made with III-V nitride semiconductors of GaN series haying high resolution and high efficiency. To design FPA(Focal Plane Array) UV $8{\times}8$ ROIC, the photodiode type sensor devices are modeled as the capacitor type ones. The ROIC reads out signals from the detector at)d outputs sequentially pixel signals after amplifying and noise filtering of them. The ROIC is fabricated using the $0.5{\mu}m$ 2Poly 3Metal N-well CMOS process. And then, it and photodiode array are hybrid bonded by gold stud bumping process using ACP(Anisotropic Conductive Paste). After the packaging, UV images appearing on PC verified the operations of the ROIC.

Pressure Sensing Properties of AlN Thin Films Sputtered at Room Temperature

  • Seok, Hye-Won;Kim, Sei-Ki;Kang, Yang-Koo;Lee, Youn-Jin;Hong, Yeon-Woo;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.94-98
    • /
    • 2014
  • Aluminum nitride (AlN) thin films with a TiN buffer layer have been fabricated on SUS430 substrate by RF reactive magnetron sputtering at room temperature under 25~75% $N_2$ /Ar. The characterization of film properties were performed using surface profiler, X-ray diffraction, X-ray photoelectron spectroscopy(XPS), and pressure-voltage measurement system. The deposition rates of AlN films were decreased with increasing the $N_2$ concentration owing to lower mass of nitrogen ions than Ar. The as-deposited AlN films showed crystalline phase, and with increasing the $N_2$ concentration, the peak of AlN(100) plane and the crystallinity became weak. Any change in the preferential orientation of the as-deposited AlN films was not observed within our $N_2$ concentration range. But in the case of 50% $N_2$ /Ar condition, the peak of (002) plane, which is determinant in pressure sensing properties, appeared. XPS depth profiling of AlN/TiN/SUS430 revealed Al/N ratio was close to stoichiometric value (45:47) when deposited under 50% $N_2/Ar$ atmosphere at room temperature. The output signal voltage of AlN sensor showed a linear behavior between 26~85 mV, and the pressure-sensing sensitivity was calculated as 7 mV/MPa.

Flow Resistance of Plane Nettings for Net Cages (우리 그물용 평면 그물감의 유수저항)

  • KIM Tae-Ho;KIM Dae-An;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2001
  • In order to make clear the resistance of plane nettings u,sed widely in constructing net cages, the resistance R taken by $R=kSU^2$, where S was the wall area of nettings, U the flow velocity, and k the resistance coefficient, was measured in a circulating water channel by using nylon Raschel nettings and PE trawler-knotted nettings coated with anti-fouling paint or not and then the properties of coefficient k were investigated. The mesh size L and the angle $\phi$ between two adjacent bars was given by the function of Reynolds number ${\lambda}U/v$ in the region of ${\lambda}U/v<180$, i. e., $$k=350(\frac{\lambda U}{v})^{-0.25}$$.where $\lambda$ was the representative size of nettings expressed as $$\lambda=\frac{{\pi}d^2}{2L\;sin\;2{\phi}}$$On the other hand, the coefficient k was almost fixed between 92 and 102 ($kg{\cdot}s^2/m^4$) in the region of ${\lambda}U/v{\geq}180$ and varied according to the ratio $S_n/S$ of the total area $S_n$ of nettings projected to the plane perpendicular to the water flow to the wall area S of nettings, i.e., it was given by $$k=98.6(\frac{S_n}{S})^{1.19}$$ regardless of the coating of paint.

  • PDF

Flow Resistance and Modeling Rule of Fishing Nets -1. Analysis of Flow Resistance and Its Examination by Data on Plane Nettings- (그물어구의 유수저항과 근형수칙 -1. 유수저항의 해석 및 평면 그물감의 자료에 의한 검토-)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.2
    • /
    • pp.183-193
    • /
    • 1995
  • Assuming that fishing nets are porous structures to suck water into their mouth and then filtrate water out of them, the flow resistance N of nets with wall area S under the velicity v was taken by $R=kSv^2$, and the coefficient k was derived as $$k=c\;Re^{-m}(\frac{S_n}{S_m})n(\frac{S_n}{S})$$ where $R_e$ is the Reynolds' number, $S_m$ the area of net mouth, $S_n$ the total area of net projected to the plane perpendicular to the water flow. Then, the propriety of the above equation and the values of c, m and n were investigated by the experimental results on plane nettings carried out hitherto. The value of c and m were fixed respectively by $240(kg\cdot sec^2/m^4)$ and 0.1 when the representative size on $R_e$ was taken by the ratio k of the volume of bars to the area of meshes, i. e., $$\lambda={\frac{\pi\;d^2}{21\;sin\;2\varphi}$$ where d is the diameter of bars, 21 the mesh size, and 2n the angle between two adjacent bars. The value of n was larger than 1.0 as 1.2 because the wakes occurring at the knots and bars increased the resistance by obstructing the filtration of water through the meshes. In case in which the influence of $R_e$ was negligible, the value of $cR_e\;^{-m}$ became a constant distinguished by the regions of the attack angle $ \theta$ of nettings to the water flow, i. e., 100$(kg\cdot sec^2/m^4)\;in\;45^{\circ}<\theta \leq90^{\circ}\;and\;100(S_m/S)^{0.6}\;(kg\cdot sec^2/m^4)\;in\;0^{\circ}<\theta \leq45^{\circ}$. Thus, the coefficient $k(kg\cdot sec^2/m^4)$ of plane nettings could be obtained by utilizing the above values with $S_m\;and\;S_n$ given respectively by $$S_m=S\;sin\theta$$ and $$S_n=\frac{d}{I}\;\cdot\;\frac{\sqrt{1-cos^2\varphi cos^2\theta}} {sin\varphi\;cos\varphi} \cdot S$$ But, on the occasion of $\theta=0^{\circ}$ k was decided by the roughness of netting surface and so expressed as $$k=9(\frac{d}{I\;cos\varphi})^{0.8}$$ In these results, however, the values of c and m were regarded to be not sufficiently exact because they were obtained from insufficient data and the actual nets had no use for k at $\theta=0^{\circ}$. Therefore, the exact expression of $k(kg\cdotsec^2/m^4)$, for actual nets could De made in the case of no influence of $R_e$ as follows; $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})\;.\;for\;45^{\circ}<\theta \leq90^{\circ}$$, $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}\;.\;for\;0^{\circ}<\theta \leq45^{\circ}$$

  • PDF

Single crystal growth of syntheric emerald by reflux method of temperatute gradient using natural beryl (천연베릴을 이용한 온도구배 환류법에 의한 합성 Emerald 단결정 육성)

  • 최의석;김무경;안영필;서청교;안찬준;이종민
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.532-538
    • /
    • 1998
  • Emerald ($3BeO{\cdot}Al_2O_3{\cdot}6SiO_2:Cr^{3+}$) single crystal was grown by temperature gradient reflux method with using Korean natural beryl. The flux of lithium-molibudenium-vanadium oxide system was made by means of mixing the 2 sort of flux which were differently melted $Mo_3-Li_2O$ and $V_2O_5-Li_2O$ each other. The optimum composition of flux was 3 mole ratio of molibudenium. vanadium oxides to lithium oxide ($(MoO_3+V_2O_5)/Li_2O$), flux additives were substituted more less then 0.2 mole% of $K_2O$ or $Na_2O$ to the $Li_2O$ amount. The melting concentration of mixing beryl material was 3~10% content to the flux, that of $Cr_2O_3$ color dopant was 1% to the beryl amount. In the crystal growing apparatus with temperature gradient in the 3 zone furnace which was separated into the block of melt, growth and return, the solution have got to circulate continuously between $1100^{\circ}C$ and $1000^{\circ}C$ in steady state. When thermal fluctuation was treated to during 2 hrs once on a day at 950~$1000^{\circ}C$ in growth zone, the supersaturation solution was maintained, controled and emerald single crystal can be grown large crystal which was prevented from the nucleation of microcrystallite. The preferencial growth direction of hexagonal columnar emerald single crystal was the c(0001) plane of botton side and vertical to the m(1010) plane of post side.

  • PDF