• Title/Summary/Keyword: M-V plane

Search Result 181, Processing Time 0.028 seconds

Crystal Growth Sensor Development of II-VI Compound Semiconductor : CdS (II-VI족 화합물 반도체의 결정성장 및 센서 개발에 관한 연구)

  • D.I. Yang;Y.J. Shin;S.Y. Lim;Y.D. Choi
    • Journal of the Korean Vacuum Society
    • /
    • v.1 no.1
    • /
    • pp.126-133
    • /
    • 1992
  • This study deals with the crystal growth and the optical characteristics of CdS thin films activatedby silver. CdS:Ag thin films were deposited by using an electron beam evaporation(EBE) technique in vacuumof 1.5X 10-'torr, voltage of 4 kV, current of 2.5 mA and substrate temperature of 250$^{\circ}$C CdS:Ag photoconductivefilms prepared by EBE method show high photoconductivity after annealing at about 550"c for 0.5 h in air andAr gas.The grain size of CdS:Ag thin films annealed in Ar atmosphere (1 atm) was grown over 1 ym and the thicknessof the films is 4-5 pm. The analysis of X-ray diffraction patterns shows that the crystal structures are hexagonal.The diffraction line by (00.2) plane can only be observed, indicating that c-axis of hexagonal grows preferentiallyperpendicular to the substrate. The profiles of photoluminescence spectra of CdS:Ag films show Gaussian typecurves at room temperature, the maximum peak spectral sensitivity of CdS:Ag is located at the wavelength of520 nm.We annealed CdS:Ag thin films in air and Ar vapor in order to make the CdS photoconductors having theintensive photocurrent, the broad distribution of the photocurrent spectrum and the large value of the ratioof the photocurrent (pc) to the dark current(dc). We found that CdS:Ag thin films annealed in air atmospherewas the best one.air atmosphere was the best one.

  • PDF

Intensity Analysis of the 26 June 1997 Kyongju Earthquake and Its Geological Significance (1997년 6월 26일 경주지진의 진도분석 및 지진 지질학적 의의)

  • 경재복;이희욱
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.13-23
    • /
    • 1998
  • An intensity of the 1997 Kyungju earthquake(M=4.3) was estimated at three hundred locations based on the field survey and questionaires from 2200 residents. The isoseismal shows almost circular pattern which doesnot reflect some specific geological trends. However,most of the Kyeongsang basin except the southwestern part is included within the area of MM intensity V. There occurred strong shaking, numerous cracks on the wall of the houses, and movement of slate on the roofs, falling of the tiles from the monument. The isoseismal of the highest MM intensity VII, 1-3 km in width and 9 km in length, is elongated along the Yangsan fault, which is located about 1.5 km west from epicenter. The lineaments near the epicenter exhibit almost N-S and NNE directions. The lineament distribution, the pattern of damage area and the solution of fault plane suggest that the Kyongju earthquake occurred with strike-slip sense along the Yangsan fault. The calculated intensity attenuation(I) with distance(R) is as follows : $I{\;}={\;}I_o{\;}+{\;}0.3461{\;}-{\;}0.3274{\;}{\times}{\;}1nR{\;}-{\;}0.086{\;}{\times}{\;}R$.

  • PDF

Radiative transfer analysis for Amon-Ra instrument

  • Seong, Se-Hyun;Ryu, Dong-Ok;Lee, Jae-Min;Hong, Jin-Suk;Kim, Seong-Hui;Yoon, Jee-Yeon;Park, Won-Hyun;Lee, Han-Shin;Park, Jong-Soo;Yu, Ji-Woong;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.28.4-29
    • /
    • 2009
  • The 'Amon-Ra' instrument of the proposed 'EARTHSHINE' satellite is a dual (i.e. imaging and energy) channel instrument for monitoring the total solar irradiance (TSI) and the Earth's irradiance at around the L1 halo orbit. Earlier studies for this instrument include, but not limited to, design and construction of breadboard Amon-Ra imaging channel, stray light suppression and system performance computation using Integrated Ray Tracing (IRT) technique. The Amon-Ra instrument is required to produce 0.3% in uncertainty for both Sunlight and Earthlight measurement. In this study, we report accurate estimation of the output electric signal derived from the orbital variation of radiant exitance from the Sun and the Earth arriving at the aperture and detector plane of the Amon-Ra. For this, orbital irradiance are computed analytically first and then confirmed by simulation using Integrated Ray Tracing (IRT) model. Specially, the results show the arriving power at the bolometer detector surface is $1.24{\mu}W$ for the Sunlight and $1.28{\mu}W$ for the Earthlight, producing the output signal pulses of 34.31 mV and 35.47 mV respectively. These results demonstrate successfully that the arriving radiative power is well within the bolometer detector dynamic range and, therefore, the proposed detector can be used for the in-orbit measurement sequence. We discuss the computational details and implications as well as the simulation results.

  • PDF

Fabrication of AlN Thin Film by Reactive RF Magnetron Sputtering and Sensing Characteristics of Oil Pressure (반응성 RF 마그네트론 스퍼터링에 의한 AlN 박막 제조 및 유압 감지 특성)

  • Seok, Hye-Won;Kim, Sei-Ki;Kang, Yang-Koo;Hong, Yeon-Woo;Lee, Young-Jin;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.12
    • /
    • pp.815-819
    • /
    • 2014
  • Aluminum nitride (AlN) thin film and TiN film as a buffer layer were deposited on INCONEL 600 substrate by reactive RF magnetron sputtering at room temperature(R.T.) under 25~75% $N_2/Ar$ atmosphere. The as-deposited AlN films at 25~50% $N_2/Ar$ showed a polycrystalline phase of hexagonal AlN, and an amorphous phase. The peak of AlN (002) plane, which was determinant on a performance of piezoelectric transducer, became strong with increasing the $N_2/Ar$ ratio. Any change in the preferential orientation of the as-deposited AlN films was not observed within our $N_2$ concentration range. The piezoelectric sensing properties of AlN module were performed using pressure-voltage measurement system. The output signal voltage of AlN module showed a linear behavior between 20~80 mV in 1~10 MPa range, and the pressure-sensing sensitivity was calculated as 3.6 mV/MPa.

OPTICAL PROPERTY AND ALIGNMENT OF KAO WIDE FIELD TELESCOPE (NEOPAT-3) (광시야 망원경 3호기 (NEOPAT-3)의 광학계 특성 및 조정)

  • Yuk, In-Soo;Kyeong, Jae-Mann;Yoon, Joh-Na;Yoon, Jae-Hyuck;Yim, Hong-Suh;Moon, Hong-Kyu;Han, Won-Yong;Byun, Yon-Ik;Kang, Yong-Woo;Yu, Sung-Yeol
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.417-428
    • /
    • 2004
  • We have investigated the optical property of the KAO(Korea Astronomy Observatory) wide field telescope (named NEOPAT-3; Near Earth Object and Satellite Patrol-3) and aligned optical system. The NEOPAT-3 is restricted to V,R,I-filters because of the refractive property of the correcting lens system. Because of the fast focal ratio, the optical performance of the NEOPAT-3 is very sensitive to its alignment factors of the optical system. To make the spot radius smaller than $8{\mu}m$ in rms over 2degree${\times}2$degree field, the optical system must satisfy the following conditions: 1) The tilt error between detector plane and focal plane should be less than 0.05degree. 2) The decenter error between the primary mirror and the correcting lens system should be less than 1mm. 3) The distance error between the primary mirror and the correcting lens system should be less than 2.3mm. In order to align the optical system accurately, we measured the aberrations of the telescope quantitatively by means of curvature sensing technique. NEOPAT-3 is installed temporary on the roof of the TRAO(Taeduk Radio Astronomy Observatory) main building to normalize system performance and to develop automatic observation.

Sparkover Voltage Estimation of Standard Sphere Gaps for Negative Polarity by Calculation of Ionization Index

  • Nishikori, Yasuo;Kojima, Soji;Kouno, Teruya
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.2
    • /
    • pp.45-50
    • /
    • 2004
  • The field utilization factor (equation omitted) (the mean electric field / the maximum electric field) of standard sphere gaps was calculated by the charge simulation method, taking into account the ground plane and shanks. n changes mainly with g/r and slightly with 1$_1$, 1$_2$ and 1, where D=2r is the sphere diameter, g is the gap length, 1$_1$ and 1$_2$, respectively, are the lengths of the upper and lower shank, and t is the shank diameter. Generally, (equation omitted) increases as 1$_1$,1$_2$ and t each becomes larger. IEC standard 60052(2002) limits t$\leq$0.2D 1$_1$$\geq$1D and prescribes A=1$_2$+D+g where A is the height of the spark point on the upper sphere. Therefore, (equation omitted) is the largest when A=9D and the smallest when A=3D. The simple equation of a straight line, (equation omitted)=1- (g/3r), can generally be used as a representative value of (equation omitted) for a wide variety of sphere diameters that are permitted by the IEC standard. The maximum electric field E$_{m}$ at sparkover of standard air gaps has also been calculated by the relation E$_{m}$=V/(equation omitted)g). E$_{m}$ describes a U-curve for g/r, up to the sphere diameter of 1 m. Moreover, for 1.5-m and 2-m diameters and especially .for negative polarity, sparkover voltages have been calculated by integration of the ionization index.index.

Analysis of Grain Boundary Phenomena in ZnO Varistor Using Dielectric Functions (유전함수를 이용한 ZnO 바리스터의 입계 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.178-178
    • /
    • 2008
  • ZnO 바리스터는 인가되는 전압에 따라 저항이 변하는 전압 의존형 저항체이며 각종 전기 전자 정보통신용 제품에 정전기(ESD) 대책용 소자로 폭 넓게 사용되는 전자 세라믹스 부품이다. 특별히 Bi-based ZnO 바리스터는 다양한 상(phase)으로 구성되어 있으며 그 입계의 전기적 특성은 소량 첨가되는 dopant의 종류에 따라 다양하게 변하는 것으로 알려져 있다. 본 연구에서는 Bi-based ZnO 바리스터 (ZnO-$Bi_2O_3$, ZnO-$Bi_2O_3-Mn_3O_4$)에서 각종 유전함수$(Z^*,M^*,\varepsilon^*,Y^*,tan{\delta})$를 이용하여 입계의 주파수-온도에 대한 특성을 살펴 보았다. 일반적인 ZnO 바리스터 제조법으로 시편을 제작하여 78K~800K 온도 범위에서 각종 유전함수를 이용하여 복소 평면도(complex plane plot)와 주파수 응답도(frequency explicit plot)의 방법으로 defect level과 입계 특성(활성화 에너지, 정전용량, 저항, 입계 안정성 등)에 대하여 고찰하였다. ZnO-$Bi_2O_3$(ZB)계와 ZnO-$Bi_2O_3-Mn_3O_4$(ZBM)계 모두 상온 이하의 온도에서 $Zn_i$$V_o$의 결함이 나타났으며, 이들의 결함 준위는 각 유전함수에 따라 다소 차이가 났다. 입계 특성으로 ZB계는 이상구간(560~660K)을 전후로 1.15 eV $\rightarrow$ 1.49 eV의 활성화 에너지의 변화가 나타났지만, ZBM계는 이러한 현상이 나타나지 않았다. 또한 입계 전위 장벽의 온도 안정성에 대해서는 Cole-Cole model을 적용하여 분포 파라미터 (distribution parameter; $\alpha$)를 구하여 고찰하였다. ZB계의 입계 안정성은 온도에 따라 불안정해 졌지만, ZBM계는 안정하였다.

  • PDF

Microstructural Changes of OFC according to the Processing Number of Multi-Axial Diagonal Forging (MADF) (다축대각단조(MADF) 가공횟수에 따른 OFC의 미세조직 변화)

  • Kim, S.T.;Kwon, S.C.;Kim, D.V.;Lee, S.;Choi, S.H.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.347-355
    • /
    • 2018
  • This study investigated the effects of the processing number of multi-axial diagonal forging (MADF) on the microstructural changes of OFC fabricated by MADF processes. The as-extruded OFC was cut to $25mm^3$ cube for the MADF processes. The MADF process consists of plane forging with a thickness reduction of 30% and diagonal forging with a diagonal forging angle of $135^{\circ}$. In order to analyze the microstructural evolutions according to the number of repetitions, 1, 2, 3 and 4 cycles of the MADF process were performed. OFC specimens were successfully deformed without surface cracking for up to 4 cycles of MADF. The grain size, average misorientation and average grain orientation spread (GOS) of MADF processed materials were analyzed using EBSD technique and their Vicker's hardness were also measured. The results showed that MADF process effectively refined the microstructure of OFC with initial average grain size of $84.2{\mu}m$. The average grain sizes of specimens MADF processed for 1, 2, 3, 4 cycles were refined to be $8.5{\mu}m$, $2.2{\mu}m$, $1.5{\mu}m$, $1.1{\mu}m$, respectively. The grain refinement seemed to be saturated when OFC was MADF processed over 2 cycles. In the case of specimens subjected to two or more cycles of MADF, the degree of decrease in average grain size was drastically reduced as the number of cycles increased due to softening phenomena such as dynamic recovery or dynamic recrystallization during processing. The degree of increase in average Vicker's hardness was also dramatically reduced as the number of cycles increased due to the same reason.

Microstructural Changes of AA1100 According to the Processing Number of Multi-Axial Diagonal Forging (MADF) (다축대각단조(MADF) 가공횟수에 따른 AA1100의 미세조직 변화)

  • Kwon, S.C.;Kim, S.T.;Kim, D.V.;Kim, M.S.;Lee, S.;Choi, S.H.;Jeong, H.T.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.63-70
    • /
    • 2019
  • This study investigates the effects of multi-axial diagonal forging (MADF) processing number on the microstructures of AA1100 fabricated using MADF processes. The cast AA1100 was annealed at $400^{\circ}C$ for 3hrs in $N_2$ atmosphere and cut into $25mm^3$ cubes for the MADF processes. The MADF process consist of plane forging with a thickness reduction of 30% and a diagonal forging with a diagonal forging angle of 135 degrees. In order to analyze the microstructural variations based on the number of repetitions, 1, 2, 3 and 4 cycles of the MADF process were performed. AA1100 specimens were successfully deformed without cracking of the surface for up to 4 cycles of MADF. The grain size, average misorientation and average grain orientation spread (GOS) of MADF processed materials were analyzed using EBSD technique. The results showed that MADF process effectively refined the microstructure of AA1100 with an initial average grain size of $337.4{\mu}m$. The average grain sizes of specimens which were MADF processed for 2, 3, 4 cycles were refined to be $1.9{\mu}m$, $1.6{\mu}m$, $1.4{\mu}m$, respectively. The grain refinement appeared saturated when AA1100 got MADF processed over 2 cycles. When the specimen was subjected to two or more cycles of MADF, the degree of decrease in the average grain size drastically decreased with an increase in the number of cycle due to the softening phenomena such as dynamic recovery or dynamic recrystallization during processing.

The Structural Investigation for the Enhancement of Electrical Conductivity in Ga-doped ZnO Targets

  • Yun, Sang-Won;Seo, Jong-Hyeon;Seong, Tae-Yeon;An, Jae-Pyeong;Gwon, -Hun;Lee, Geon-Bae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.2-243.2
    • /
    • 2011
  • ZnO materials with a wide band gap of approximately 3.3 eV has been used in transparent conducting oxides (TCO) due to exhibitinga high optical transmission, but its low conductivity acts as role of a limitation for conducting applications. Recently, Ga or Al-doped ZnO (GZO, AZO) becomes transparent conducting materials because of high optical transmission and excellent conductivity. However, the fundamental mechanism underlying the improvement of electrical conductivity of the GZO is still the subject of debate. In this study, we have fully investigated the reasons of high conductivity through the characterization of plane defects, crystal orientation, doping contents, crystal structure in Zn1-xGaxO (x=0, 3, 5.1, 5.6, 6.6 wt%). We manufactured Zn1-xGaxO by sintering ZnO and Ga2O3 powers, having a theoretical density of 99.9% and homogeneous Ga-dopant distribution in ZnO grains. The GZO containing 5.6 wt% Ga represents the highest electrical conductivity of $7.5{\times}10^{-4}{\Omega}{\cdot}m$. In particular, many twins and superlattices were induced by doping Ga in ZnO, revealed by X-ray diffraction measurements and TEM (transmission electron microscopy) observations. Twins developed in conventional ZnO crystal are generally formed at (110) and (112) planes, but we have observed the twins at (113) plane only, which is the first report in ZnO material. Interestingly, the superlattice structure was not observed at the grains in which twins are developed and the opposite case was true. This structural change in the GZO resulted in the difference of electrical conductivity. Enhancement of the conductivity was closely related to the extent of Ga ordering in the GZO lattice. Maximum conductivity was obtained at the GZO with a superlattice structure formed ideal ordering of Ga atoms.

  • PDF