• Title/Summary/Keyword: M-ICP

Search Result 530, Processing Time 0.029 seconds

Performance improvement of 2 stage GM-type pulse tube Cryocooler for cryopump

  • Park, Seong-Je;Koh, Deuk-Yong;Suh, Jeong-Kyoon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.30-35
    • /
    • 2011
  • This paper describes experimental study and performance improvement of 2 stage Gifford-McMahon (G-M) type pulse tube cryocooler for cryopump. The objective of this study is to improve the efficiency of 2 stage pulse tube cryocooler for substituting 2 stage G-M cryocooler used in cryopump. The target cooling capacities are 5 W at 20 K and 35 W at 80 K for the $1^{st}$ and the $2^{nd}$ stage, respectively. These values are good cooling capacities for vacuum level in medium size ICP 200 cryopump. Design of the 2 stage pulse tube cryocooler is conducted by FZKPTR(Forschungs Zentrum Karlsruhe Pulse Tube Refrigerator) program. In order to improve the performance of 2 stage pulse tube cryocooler, U-type pulse tube cryocooler is fabricated and connecting tubes are minimized for reducing dead volumes and pressure losses. Also, to get larger capacities, orifice valves and double inlet valves are optimized and the compressor of 6 kW is used. On the latest unit, the lowest temperatures of 2 stage pulse tube cryocooler are 42 K ($1^{st}$ stage) and 8.3 K ($2^{nd}$ stage) and the cooling capacities are 40 W at 82.9 K ($1^{st}$ stage) and 10 W at 20.5 K ($2^{nd}$ stage) with 6.0 kW of compressor input power. This pulse tube cryocooler is suited for commercial medium size cryopump. In performance test of cryopump with 2 stage pulse tube cryocooler, pumping speed for gaseous nitrogen is 4,300 L/s and the ultimate vacuum pressure is $7.5{\times}10^{-10}$ mbar.

Synthesis of Spherical ZrO2 Powders by Thermal Hydrolysis and Hydrothermal Crystallization (열가수분해 및 수열결정화에 의한 구형 ZrO2 분말의 합성)

  • Cho, Churl-Hee;Jin, Ming-Ji;Choi, Jae-Young;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.420-426
    • /
    • 2002
  • $ZrO_2$, $Y_2O_3$-doped $ZrO_2$ and CaO-doped $ZrO_2$ powders were prepared by hydrothermal crystallizing spherical $ZrO_2$ gel which had been synthesized by thermal hydrolysis reaction. After the hydrothermal crystallization process, the formed crystallized powders sustained its original spherical shape and had the mean particle size of $0.4{\mu}m$. The particles were composed of about 10nm sized primary particles. The agglomeration strength between the primary particles appears very weak considering that the spherical particles were broken into the primary particles during the pressing process. The particle shape, size, phase fraction and dopant content were analyzed and crystallization mechanism of spherical gel was discussed.

Distribution of Ions and Molecules Density in N2/NH3/SiH4 Inductively Coupled Plasma with Pressure and Gas Mixture Ratio) (N2/NH3/SiH4 유도 결합형 플라즈마의 압력과 혼합가스 비율에 따른 이온 및 중성기체 밀도 분포)

  • Seo, Kwon-Sang;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.370-378
    • /
    • 2017
  • A fluid model of 2D axis-symmetry based on inductively coupled plasma (ICP) reactor using $N_2/NH_3/SiH_4$ gas mixture has been developed for hydrogenated silicon nitride ($SiN_x:H$) deposition. The model was comprised of 62 species (electron, neutral, ions, and excitation species), 218 chemical reactions, and 45 surface reactions. The pressure (10~40 mTorr) and gas mixture ratio ($N_2$ 80~96 %, $NH_3$ 2~10 %, $SiH_4$ 2~10 %) were considered simulation variables and the input power fixed at 1000 W. Different distributions of electron, ions, and molecules density were observed with pressure. Although ionization rate of $SiH_2{^+}$ is higher than $SiH_3{^+}$ by electron direct reaction with $SiH_4$, the number density of $SiH_3{^+}$ is higher than $SiH_2{^+}$ in over 30 mTorr. Also, number density of $NH^+$ and $NH_4{^+}$ dramatically increased by pressure increase because these species are dominantly generated by gas phase reactions. The change of gas mixture ratio not affected electron density and temperature. With $NH_3$ and $SiH_4$ gases ratio increased, $SiH_x$ and $NH_x$ (except $NH^+$ and $NH_4{^+}$) ions and molecules are linearly increased. Number density of amino-silane molecules ($SiH_x(NH_2)_y$) were detected higher in conditions of high $SiH_x$ and $NH_x$ molecules density.

Field emission properties of CNT-W tips as a function of the composition ratio of Ni and Co catalysts in CNT growth (CNT 성장시 Ni 및 Co 촉매의 조성비에 따른 CNT-W 팁의 전계방출 특성 분석)

  • Kim, Won;Yun, Sung-Jun;Kim, Young-Kwang;Kim, Jong-Pil;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1269-1270
    • /
    • 2007
  • Carbon nanotubes (CNTs) are directly grown on W-tips at $700^{\circ}C$ using an ICP-CVD method. Sharpening of W-tip is done by electrochemical etch and their diameters are limited to range from $3{\mu}m$ to $5{\mu}m$. Catalysts for CNTs growth are formed by RF and DC co-sputtering systems using Ni and Co. The composition ratio of Ni and Co has been evaluated by energy dispersive x-ray spectroscopy (EDS). The micro-images of CNTs are monitored by field emission scanning electron microscope (FESEM). It is observed from Raman study that the intensity of the D-peak is increased by increasing the amount of Co catalyst. Furthermore, the measurement of field emission properties of CNTs show that the CNT grown on a single Co catalyst possess the greatest performance such as $V_{th}$=1,115V and $I_{max}=164{\mu}A$.

  • PDF

A Study of Dry Etch Mechanism of the GaN using Plasma Mass Spectrometry

  • Kim, H.S.;Lee, W.J.;Jang, J.W.;Yeom, G.Y.;Lee, J.W.;Kim, T.I.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.416-422
    • /
    • 1999
  • The characteristics of inductively coupled Cl$_2$/BCl$_3$ plasmas during the GaN etching were studied using plasma mass spectrometry by measuring the relative amounts of reactive ions, neutrals, and etch products. GaN etch rates increased with the increase of pressure and showed a maximum near 25mTorr for the pure $Cl_2$ and near 30mTorr for $Cl_2$$BCl_3$. The addition of$ BCl_3$ to $Cl_2$ also was increased GaN etch rates until 50%BCl$_3$ was mixed to $Cl_2$. The GaN etching with pure $Cl Cl_2$ appears to be related to the combination of Cl$_2^{+}$ ion bombardment and the chemical reaction of Cl radicals. In the case of the GaN etching with Cl$_2$/BCl$_3$, in addition to the combined effect of$_2^{ +}$ ions and Cl radicals, $_BCl2^{+ }$ ions appear to be responsible for some of GaN etching even though they do not have significant effect on the GaN etching compared to $Cl_2^{+}$ and Cl. $Ga^{+ }$ , $GaCl^{+}$ , $GaCl_2^{+}$ , and $N_2^{+}$ were observed as the positive ions of etch products, and the intensities of these etch products showed the same trends as those of GaN etch rate. Among the etch products, Ga and $N_2$ appear to be the main etch products.

  • PDF

A Facile Process for Surface Modification with Lithium Ion Conducting Material of Li2TiF6 for LiMn2O4 in Lithium Ion Batteries

  • Kim, Min-Kun;Kim, Jin;Yu, Seung-Ho;Mun, Junyoung;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • A facile method for surface coating with $Li_2TiF_6$ which has a high lithium-ion conductivity, on $LiMn_2O_4$ spinel cathode material for high performance lithium ion batteries. The surface coating is performed by using a co-precipitation method with $Li_2CO_3$ powder and $H_2TiF_6$ solution under room temperature and atmospheric pressure without special equipment. Total coating amount of $Li_2TiF_6$ is carefully controlled from 0 to 10 wt.% based on the active material of $LiMn_2O_4$. They are evaluated by a systematic combination of analyses comprising with XRD, SEM, TEM and ICP. It is found that the surface modification of $Li_2TiF_6$ is very beneficial to high cycle life and excellent rate capability by reducing surface failure and supporting lithium ions transportation on the surface. The best coating condition is found to have a high cycle life of $103mAh\;g^{-1}$ at the 100th cycle and a rate capability of $102.9mAh\;g^{-1}$ under 20 C. The detail electrochemical behaviors are investigated by AC impedance and galvanostatic charge and discharge test.

Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method (화학발광법에 의한 수용액 중의 선택적 수은(II) 이온 정량)

  • Kim, Kyung-Min;Jang, Taek-Gyun;Kim, Young-Ho;Oh, Sang-Huyb;Lee, Sang-Hak
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • A selective determination method of mercury (II) ion in aqueous solution by luminol-based chemiluminescence system (luminol CL system) has been developed. Determination of metal ions such as copper (II), iron (III), chromium (III) ion in solution by the luminol CL system using its catalytic role in the reaction of luminol and hydrogen peroxide has been reported by several groups. In this study, the catalytic activity of mercury (II) ion in the reaction of luminol and hydrogen peroxide was observed by the enhanced CL intensity of the luminol CL system. Based on this phenomenon, experimental conditions of the luminol CL system were investigated and optimized to determine mercury (II) ion in aqueous solution. While mercury (II) ion in mixed sample solution containing mercury (I) and (II) ions highly enhanced the CL intensity of the luminol CL system, the mercury (I) ion could not enhanced the CL intensity. Thus selective determination of the mercury (II) ions in a mixture containing mercury (I) and (II) ions could be achieved. Each concentration of mercury (I) and (II) ions in aqueous solution can be obtained from the results of the CL method that give the concentration of only mercury (II) ion and the inductively coupled plasma (ICP) method that give the total concentration of mercury ions. On the optimized conditions, the calibration curve of mercury (II) ion was linear over the range from $1.25{\times}10^{-5}$ to $2.50{\times}10^{-3}M$ with correlation coefficient of 0.991. The detection limit of mercury (II) ion in aqueous solution was calculated to be $1.25{\times}10^{-7}M$.

Trace Element Analysis and Source Assessment of Household Dust in Daegu, Korea (대구지역 일반주택의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Jung, Yeoun-Wook;Yoon, Ho-Suk;Kwak, Jin-Hee;Han, Jeong-Uk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.69-78
    • /
    • 2010
  • In order to investigate the degree of household dust contamination, 48 samples of household dust (24 from urban area and 24 from rural area) in Daegu city were collected in vacuum cleaner during January to February 2009. Samples were sieved below 100 ${\mu}m$, and 14 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, V, Zn) were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, and V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from urban anthropogenic sources. Household dust in urban area was more affected by anthropogenic sources compared with that of rural area. Pollution index of heavy metals revealed that urban area was 1.8 times more contaminated with heavy metal components than rural area. The correlation analysis among trace elements indicated that components were correlated with natural sources-natural sources (Al-Mg, Al-Mn, Fe-Mn) and natural sources-anthropogenic sources (Al-V, Fe-Cr, V-Mn) in both urban area and rural area. Trace element components of rural area were more correlated than those of urban area. Houses that use oil for heating fuel had relatively higher contents of heavy metals rather than those using gas or electricity for heating fuel. Houses with children also had higher contents of heavy metals. In addition, the age of houses was found to influence the heavy metal levels in household dusts, with older houses (>10years) having higher concentrations than newer houses (<10years) and houses located near the major road (<10 m) were found to have relatively higher heavy metal levels in household dust.

Microbial Leaching of Iron from Magnetite (미생물을 이용한 자철석으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Seo, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.265-275
    • /
    • 2006
  • It is in its infancy to use bacteria as a novel biotechnology for leaching precious and heavy metals from raw materials. The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite reduction by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial leaching experiments were performed using commercial magnetite, Aldrich magnetite, in well-defined mediums with and without bacteria. Water soluble Fe production was determined by ICP analysis of bioleached samples in comparison to uninoculated controls, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 107 ppm) was higher than that in the anaerobic environments (Fe = 94 ppm). In the anaerobic conditions, Fe(III) in commercial magnetite was also reduced to Fe(II), but no secondary mineral phases were observed. Amorphous iron oxides formed in the medium under aerobic conditions where there was sufficient supply of oxygen from the atmosphere. SEM observation suggests that the reduction process involves dissolution-precipitation mechanisms as opposed to solid state conversion of magnetite to amorphous iron oxides. The ability of bacteria to leach soluble iron and precipitate amorphous iron oxides from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite plays an important role in the largest pool of electron acceptor as well as the tool as a novel biotechnology for leaching precious and heavy metals from raw materials.

Effects of Humic Acid on the pH-dependent Sorption of Europium (Eu) to Kaolinite (PH 변화에 따른 카올리나이트와 유로퓸(Eu)의 흡착에 대한 휴믹산의 영향)

  • Harn, Yoon-I;Shin, Hyun-Sang;Rhee, Dong-Seok;Lee, Myung-Ho;Chung, Euo-Cang
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.23-32
    • /
    • 2009
  • The sorption of europium (Eu (III)) onto kaolinite and the influence of humic acids over a range of pH 3 ~ 11 has been studied by batch adsorption experiment (V/m = 250 : 1 mL/g, $C_{Eu(III)}\;=\;1\;{\times}\;10^{-5}\;mol/L$, $C_{HA}\;=\;5{\sim}50\;mg/L$, $P_{CO2}=10^{-3.5}\;atm$). The concentrations of HA and Eu(III) in aqueous phase were measured by UV absorbance at 254nm (e.g., $UV_{254}$) and ICP-MS after microwave digestion for HA removals, respectively. Results showed that the HA sorption onto kaolinite was decreased with increasing pH and their sorption isotherms fit well with the Langmuir adsorption model (except pH 3). Maximum amount ($q_{max}$) for the HA sorption at pH 4 to 11 was ranged from 4.73 to 0.47 mg/g. Europium adsorption onto the kaolinite in the absence of HA was typical, showing an increases with pH and a distinct adsorption edge at pH 3 to 5. However in the presence of HA, Eu adsorption to kaolinite was significantly affected. HA was shown to enhance Eu adsorption in the acidic pH range (pH 3 ~ 4) due to the formation of additional binding sites for Eu coming from HA adsorbed onto kaolinite surface, but reduce Eu adsorption in the intermediate and high pH above 6 due to the formation of aqueous Eu-HA complexes. The results on the ternary interaction of kaolinte-Eu-HA are compared with those on the binary system of kaolinite-HA and kaolinite-Eu and adsorption mechanism with pH was discussed.