PH 변화에 따른 카올리나이트와 유로퓸(Eu)의 흡착에 대한 휴믹산의 영향

Effects of Humic Acid on the pH-dependent Sorption of Europium (Eu) to Kaolinite

  • 한윤이 (서울산업대학교 에너지환경대학원 에너지환경공학과) ;
  • 신현상 (서울산업대학교 에너지환경대학원 에너지환경공학과) ;
  • 이동석 (강원대학교 지구환경공학부) ;
  • 이명호 (한국원자력연구원 원자력화학연구부) ;
  • 정의창 (한국원자력연구원 원자력화학연구부)
  • Harn, Yoon-I (Department of Environmental Energy Engineering, Seoul National University of Technology) ;
  • Shin, Hyun-Sang (Department of Environmental Energy Engineering, Seoul National University of Technology) ;
  • Rhee, Dong-Seok (Division of Environmental and Geosystem Engineering, Kangwon National University) ;
  • Lee, Myung-Ho (Nuclear Chemistry, Korea Atomic Energy Research Institute) ;
  • Chung, Euo-Cang (Nuclear Chemistry, Korea Atomic Energy Research Institute)
  • 발행 : 2009.08.31

초록

본 연구에서는 pH(3 ~ 11)에 따른 카올리나이트(kaolinite)와 유로퓸(Eu(III)의 흡착에 있어서 휴믹산(HA)이 미치는 영향을 회분식 실험(V/m = 250 : 1 mL/g, $C_{Eu(III)}\;=\;1\;{\times}\;10^{-5}\;mol/L$, $C_{HA}\;=\;5{\sim}50\;mg/L$, $P_{CO2}=10^{-3.5}\;atm$)을 통해 조사하였다. 반응 상등액 중 HA 농도는 254 nm에서의 UV 흡광도(즉, $UV_{254}$) 분석을 통해 결정하였고, Eu(III) 농도는 마이크로웨이브(microwave)를 통한 전처리 후 ICP-MS를 이용하여 측정하였다. 실험결과, 카올리나이트에 대한 HA의 흡착은 전형적인 Langmuir 흡착 특성(pH 3 제외)을 보였으며, pH가 증가할수록 감소하였다. pH 4 ~ 11에서의 최대 흡착량($q_{max}$)은 4.73 ~ 0.47 mg/g의 범위이었다. 카올리나이트에 대한 Eu(III) 흡착은 pH 3 ~ 5에서 급격히 증가한 이 후 pH 6이상에서 흡착포화(adsorption edge)에 도달하는 전형적인 Eu-광물질 흡착곡선을 보였다. 그러나 HA가 존재하는 경우 pH에 따른 흡착특성에 변화를 보였다. 즉, pH가 낮은 산성영역(pH 3 ~ 4)에서는 카올리나이트에 흡착된 HA에 의한 Eu의 추가 흡착으로 인해 Eu의 흡착율이 상승하나, 중성 및 알칼리 영역(pH > 6)에서는 용존성 EuHA 착물 형성으로 인해 Eu 흡착율이 크게 감소하였다. 이러한 카올리나이트-Eu-HA 삼성분계에서의 흡착실험 결과는 카올리나이트-HA, 카올리나이트-Eu 등의 결과와 비교 해석하였고, pH에 따른 흡착 기작의 차이점을 고찰하였다.

The sorption of europium (Eu (III)) onto kaolinite and the influence of humic acids over a range of pH 3 ~ 11 has been studied by batch adsorption experiment (V/m = 250 : 1 mL/g, $C_{Eu(III)}\;=\;1\;{\times}\;10^{-5}\;mol/L$, $C_{HA}\;=\;5{\sim}50\;mg/L$, $P_{CO2}=10^{-3.5}\;atm$). The concentrations of HA and Eu(III) in aqueous phase were measured by UV absorbance at 254nm (e.g., $UV_{254}$) and ICP-MS after microwave digestion for HA removals, respectively. Results showed that the HA sorption onto kaolinite was decreased with increasing pH and their sorption isotherms fit well with the Langmuir adsorption model (except pH 3). Maximum amount ($q_{max}$) for the HA sorption at pH 4 to 11 was ranged from 4.73 to 0.47 mg/g. Europium adsorption onto the kaolinite in the absence of HA was typical, showing an increases with pH and a distinct adsorption edge at pH 3 to 5. However in the presence of HA, Eu adsorption to kaolinite was significantly affected. HA was shown to enhance Eu adsorption in the acidic pH range (pH 3 ~ 4) due to the formation of additional binding sites for Eu coming from HA adsorbed onto kaolinite surface, but reduce Eu adsorption in the intermediate and high pH above 6 due to the formation of aqueous Eu-HA complexes. The results on the ternary interaction of kaolinte-Eu-HA are compared with those on the binary system of kaolinite-HA and kaolinite-Eu and adsorption mechanism with pH was discussed.

키워드

참고문헌

  1. 신현상, 이동석, 강기훈, 2001, 분자량별 분류에 따른 휴믹산의 구조적 특성 및 Eu(III)과의 착물반응 특성 비교에 대한 연구, 분석과학회지 14(2), 159-166
  2. 황진영, 장명익, 김준식, 조원모, 안병석, 강수원, 2000, 우리나라 황토(풍화토)의 구성광물 및 화학성분, 한국광물학회지, 13(3), 147-163
  3. Aiken, G.R., Mcknight, D.M., Wershaw, R.L., and MacCarthy, P., 1985, Humic Substances in Soil, Sediment and Water, Wiley and Sons, New York, U.S.A., 15-20
  4. Aimin, L., Minhuan, X.U., Wenhui, L., Xuejun, W., and Jingyu, D., 2008, Adsorption characteristics of fulvic acid fractions onto kaolinite, J. Environ. Sci., 20, 528-535 https://doi.org/10.1016/S1001-0742(08)62090-2
  5. Baik, M.H., Cho, W.J., and Hahn, P.S., 2004, Effects of speciation and carbonate on the sorption of Eu(III) onto granite, Environ. Eng. Res., 9(4),160-167 https://doi.org/10.4491/eer.2004.9.4.160
  6. Brady, P.V., Cygan, R.T., and Nagy, K.L., 1998, Surface charge and metal sorption to kaolinite. In: Adsorption of metals by geomedia:variables, mechanisms, and model applications (Jenne, E. A., eds.). Acedemic Press, San Diego, 371-382
  7. Buda, R., Banik, N.L., Kratz, J.V., and Trautmann, N., 2008, Studies of the ternary systems humic substances - kaolinite - Pu(III) and Pu(IV), Radiochim. Acta, 96, 657-665 https://doi.org/10.1524/ract.2008.1550
  8. Buffle, J., 1998, Complexation reactions in aquatic systems, Ellis Horwood Limited, New York
  9. Choppin, G.R., 2007, Actinide speciation in the environment, J. Radioanal. Nicl. Chem., 273(3), 695-703 https://doi.org/10.1007/s10967-007-0933-3
  10. Fairhurst, A.J., Warwick, P., and Richardson, S., 1995a, The influence of humic acid on the adsorption of europium onto inorganic colloids as a function of pH, Colloids Sur. A: Physicochem. Eng. Aspects, 99, 187-199 https://doi.org/10.1016/0927-7757(95)03124-V
  11. Fairhurst, A.J. and Warwick, P., 1995b, The influence of humic acid on europium-mineral interactions, Colloids Sur. A: Physicochem. Eng. Aspects, 154, 229-234
  12. Hur, J. and Schalutman, M.A, 2003, Molecular weight fractionation of humic substances by adsorption onto minierals, J Colloid Interface Sic., 264, 313-321 https://doi.org/10.1016/S0021-9797(03)00444-2
  13. Kang, M.J. and Hahn, P.S., 2004, Adsorption behaviour of aqueous europium on kaolinite under various disposal conditions, Korean J. Chem. Eng., 2192, 419-424
  14. Kim, J.I., 1986, Chemical behaviour of transuranic elements in natural aquatic systems, In Handbook on the physics and chemistry of the actinides, A. J. Freeman and C. Keller. Eds., Elsevier Science Publishers B. V
  15. Kim, J.I., 2006, Significance of actinide chemistry for the longterm safty of waste disposal, Nucl. Eng. Tech., 38(6), 459-482
  16. Krepelov a, A., ph D. Thesis., 2007, Influence of humic acid on the sorption of uranium(VI) and americium(IlI) onto kaolinite, Technischen Unversitat Dresden, Tschechische Republik
  17. Krepelov a, A., Sachs, S., and Bernhard, G, 2003, Uranium(V) sorption onto kaolinite in the presence and absence of humic acid, Radiochim. Acta., 94, 825-833 https://doi.org/10.1524/ract.2006.94.12.825
  18. Laxan, D.P.H., 1985, Trace metal adsorption/coprecipitation on hydrous ferric oxide under realistic conditions-the role of humic acid, Water Res., 19, 1229-1236 https://doi.org/10.1016/0043-1354(85)90175-7
  19. Ma, C. and Eggleton, R.A., 1999, Cation exchange capacity of kaolinite, Clay and Clay Minerals, 47(2), 174-180 https://doi.org/10.1346/CCMN.1999.0470207
  20. Maes, A, Brabandere, J.D., and Cremers, A, 1991, Complexation of Europium (III) and Americium (III) with Humic Subst, Radiochim Acta, 52/53, 41-47
  21. Murphy, E.M., Zachara, J.M., Smith, S.C., Phillips, J.L., and Wietsma, T.W., 1994, Interaction of Hydrophobic Organic Compounds with Mineral-Bound Humic Substances, Environ. Sci. Tecnhol., 1291, 1291-1299 https://doi.org/10.1021/es00056a017
  22. Octs, M., Cosovic, B., and Stumm, W., 1994, Corrdinative and hydrophobic interaction of humic substances with hydrophilic $Al_2O_3$ and hydrophobic mercury surfaces, Geochim. Cosmochim Acta, 58, 639-650 https://doi.org/10.1016/0016-7037(94)90494-4
  23. Patrick, V.B., Randall, T.C., and kathryn, L.N., 1998, Surface charge and metal sorption to kaolinite, Adsorption of metals by geomedia, Academic Press
  24. Pruett, R.J. and Webb, H.L., 1993, Sampling and analysis of KGa-1b well-characterized kaolin source clay, Clay & Clay Minerals, 41(4), 514-519 https://doi.org/10.1346/CCMN.1993.0410411
  25. Samadfam, M., Jintoku, T., Sato, S., Ohashi, H., Mitsugashira, T., Hara, M., Suzuki, Y., 2000, Effect of humic acid on the sorption of Am(III) and Cm(III) on kaolinite, Radiochim. Acta, 88, 717-721 https://doi.org/10.1524/ract.2000.88.9-11.717
  26. Schmitzer, M. and Kodama, H., 1966, Montmorillonite : Effect of pH on adsorption of a soil humic compound, Science (Washington D.C.), 153(3731), 70-71 https://doi.org/10.1126/science.153.3731.70
  27. Stevenson, F.J., 1994, Humus Chemistry, Genesis, Composition, Reactio, 453-471, Wiley, New York, U.S.A
  28. Schmeide, K., Pompe, S., Bubner, M., Heise, J.H., Bernhard, G, Nitsche, H., 2000, Uranium(VI) sorption onto phyllite and selected minerals in the presence of humic acid, 88, 723-730 https://doi.org/10.1524/ract.2000.88.9-11.723
  29. Suffet, I.H. and Mcknight, P., 1987, Aquatic Humic Substances - Influence on Fate and Treatment of Pollutants, American Chemical Society, Washington, DC. U.S.A., 83-116
  30. Sutheimer, S.H. and Maurice, P.A., Zhou, Q., 1999, Dissolution of well and crystallized kaolinites: Al speciation and effects of surface characteristics, Am. Mineral, 84, 620-628 https://doi.org/10.2138/am-1999-0415
  31. Takahashi, Y, Minai, Y, Kimura, T., Tominage, T., 1998, Adsorption of europium(III) and americium(III) on kaolinite and montmorillonite in the presence of humic acid, J. Radioanal. Nucl. Chem., 234, 277-282 https://doi.org/10.1007/BF02389785
  32. Tarchitzky, J, Chen, Y, and Banin, A., 1993, Humic substances and pH effects on sodium- and calcium- montmorillonite flocculation and dispersion, Soil Sci Soc. Am, J., 57(2), 367-372 https://doi.org/10.2136/sssaj1993.03615995005700020014x
  33. Tipping, E. Griffith, J.R., and Hilton, J., 1983, The effect of adsorpbed humic substances on the uptake of copper(II) by goethite, Croat. Chem. Acta, 56, 613-621
  34. Xiangke, W, Wenming, D., Xiongxin, D., Aixia, W, Jinzhou, D. and Zuyi, T., 2000, Sorption and desorption of Eu and Yb on alumina: mechanisims and effect of fulvic acid, Appl. Radiat. Isot.,52,165-173 https://doi.org/10.1016/S0969-8043(99)00133-5